IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v13y2020i11p270-d439333.html
   My bibliography  Save this article

CoCDaR and mCoCDaR: New Approach for Measurement of Systemic Risk Contributions

Author

Listed:
  • Rui Ding

    (Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA)

  • Stan Uryasev

    (Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA)

Abstract

Systemic risk is the risk that the distress of one or more institutions trigger a collapse of the entire financial system. We extend CoVaR (value-at-risk conditioned on an institution) and CoCVaR (conditional value-at-risk conditioned on an institution) systemic risk contribution measures and propose a new CoCDaR (conditional drawdown-at-risk conditioned on an institution) measure based on drawdowns. This new measure accounts for consecutive negative returns of a security, while CoVaR and CoCVaR combine together negative returns from different time periods. For instance, ten 2% consecutive losses resulting in 20% drawdown will be noticed by CoCDaR, while CoVaR and CoCVaR are not sensitive to relatively small one period losses. The proposed measure provides insights for systemic risks under extreme stresses related to drawdowns. CoCDaR and its multivariate version, mCoCDaR, estimate an impact on big cumulative losses of the entire financial system caused by an individual firm’s distress. It can be used for ranking individual systemic risk contributions of financial institutions (banks). CoCDaR and mCoCDaR are computed with CVaR regression of drawdowns. Moreover, mCoCDaR can be used to estimate drawdowns of a security as a function of some other factors. For instance, we show how to perform fund drawdown style classification depending on drawdowns of indices. Case study results, data, and codes are posted on the web.

Suggested Citation

  • Rui Ding & Stan Uryasev, 2020. "CoCDaR and mCoCDaR: New Approach for Measurement of Systemic Risk Contributions," JRFM, MDPI, vol. 13(11), pages 1-18, November.
  • Handle: RePEc:gam:jjrfmx:v:13:y:2020:i:11:p:270-:d:439333
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/13/11/270/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/13/11/270/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexei Chekhlov & Stanislav Uryasev & Michael Zabarankin, 2005. "Drawdown Measure In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 13-58.
    2. Mauro Bernardi & Lea Petrella, 2015. "Interconnected Risk Contributions: A Heavy-Tail Approach to Analyze U.S. Financial Sectors," JRFM, MDPI, vol. 8(2), pages 1-29, April.
    3. Gilbert W. Bassett Jr. & Hsiu-Lang Chen, 2001. "Portfolio style: Return-based attribution using quantile regression," Empirical Economics, Springer, vol. 26(1), pages 293-305.
    4. Alex Golodnikov & Viktor Kuzmenko & Stan Uryasev, 2019. "CVaR Regression Based on the Relation between CVaR and Mixed-Quantile Quadrangles," JRFM, MDPI, vol. 12(3), pages 1-22, June.
    5. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    6. Rockafellar, R.T. & Royset, J.O. & Miranda, S.I., 2014. "Superquantile regression with applications to buffered reliability, uncertainty quantification, and conditional value-at-risk," European Journal of Operational Research, Elsevier, vol. 234(1), pages 140-154.
    7. Zabarankin, Michael & Pavlikov, Konstantin & Uryasev, Stan, 2014. "Capital Asset Pricing Model (CAPM) with drawdown measure," European Journal of Operational Research, Elsevier, vol. 234(2), pages 508-517.
    8. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Ding, 2023. "f-Betas and Portfolio Optimization with f-Divergence induced Risk Measures," Papers 2302.00452, arXiv.org, revised May 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alex Golodnikov & Viktor Kuzmenko & Stan Uryasev, 2019. "CVaR Regression Based on the Relation between CVaR and Mixed-Quantile Quadrangles," JRFM, MDPI, vol. 12(3), pages 1-22, June.
    2. Allen, D.E. & McAleer, M.J. & Powell, R.J. & Singh, A.K., 2015. "Down-side Risk Metrics as Portfolio Diversification Strategies across the GFC," Econometric Institute Research Papers EI2015-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Stanislaus Maier-Paape & Qiji Jim Zhu, 2018. "A General Framework for Portfolio Theory. Part II: Drawdown Risk Measures," Risks, MDPI, vol. 6(3), pages 1-31, August.
    4. Kouaissah, Noureddine, 2021. "Using multivariate stochastic dominance to enhance portfolio selection and warn of financial crises," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 480-493.
    5. David E. Allen & Michael McAleer & Robert J. Powell & Abhay K. Singh, 2014. "European Market Portfolio Diversifcation Strategies across the GFC," Working Papers in Economics 14/25, University of Canterbury, Department of Economics and Finance.
    6. Grechuk, Bogdan & Zabarankin, Michael, 2018. "Direct data-based decision making under uncertainty," European Journal of Operational Research, Elsevier, vol. 267(1), pages 200-211.
    7. Cheng Peng & Stanislav Uryasev, 2023. "Factor Model of Mixtures," Papers 2301.13843, arXiv.org, revised Mar 2023.
    8. David E. Allen & Michael McAleer & Shelton Peiris & Abhay K. Singh, 2014. "Hedge Fund Portfolio Diversification Strategies Across the GFC," Working Papers in Economics 14/27, University of Canterbury, Department of Economics and Finance.
    9. David E. Allen & Michael McAleer & Robert J. Powell & Abhay K. Singh, 2016. "Down-Side Risk Metrics as Portfolio Diversification Strategies across the Global Financial Crisis," JRFM, MDPI, vol. 9(2), pages 1-18, June.
    10. Rui Ding, 2023. "f-Betas and Portfolio Optimization with f-Divergence induced Risk Measures," Papers 2302.00452, arXiv.org, revised May 2023.
    11. Harris, Richard D.F. & Mazibas, Murat, 2013. "Dynamic hedge fund portfolio construction: A semi-parametric approach," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 139-149.
    12. Jaehyung Choi & Hyangju Kim & Young Shin Kim, 2021. "Diversified reward-risk parity in portfolio construction," Papers 2106.09055, arXiv.org, revised Sep 2022.
    13. Jiang, Chun-Fu & Peng, Hong-Yi & Yang, Yu-Kuan, 2016. "Tail variance of portfolio under generalized Laplace distribution," Applied Mathematics and Computation, Elsevier, vol. 282(C), pages 187-203.
    14. Juan Carlos Matallín-Sáez & Amparo Soler-Domínguez & Emili Tortosa-Ausina, 2019. "Does active management add value? New evidence from a quantile regression approach," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1734-1751, October.
    15. Víctor Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, 2017. "“Resolution of optimization problems and construction of efficient portfolios: An application to the Euro Stoxx 50 index"," IREA Working Papers 201702, University of Barcelona, Research Institute of Applied Economics, revised Feb 2017.
    16. J. Carlos Matallín-Sáez & Amparo Soler-Domínguez & Emili Tortosa-Ausina, 2013. "Does active management add value? New evidence from a quantile regression," Working Papers 2013/01, Economics Department, Universitat Jaume I, Castellón (Spain).
    17. Noureddine Kouaissah & Sergio Ortobelli Lozza & Ikram Jebabli, 2022. "Portfolio Selection Using Multivariate Semiparametric Estimators and a Copula PCA-Based Approach," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 833-859, October.
    18. Dominique Guegan & Bertrand K Hassani, 2014. "Distortion Risk Measures or the Transformation of Unimodal Distributions into Multimodal Functions," Documents de travail du Centre d'Economie de la Sorbonne 14008, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    19. Xia Han & Liyuan Lin & Ruodu Wang, 2022. "Diversification quotients: Quantifying diversification via risk measures," Papers 2206.13679, arXiv.org, revised Mar 2024.
    20. Ola Mahmoud, 2015. "The Temporal Dimension of Risk," Papers 1501.01573, arXiv.org, revised Jun 2016.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:13:y:2020:i:11:p:270-:d:439333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.