IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i9p5670-d809896.html
   My bibliography  Save this article

Control Strategies of Plastic Biodegradation through Adjusting Additives Ratios Using In Silico Approaches Associated with Proportional Factorial Experimental Design

Author

Listed:
  • Haigang Zhang

    (Alan G. MacDiarmid Institute, Jilin University, Changchun 130012, China)

  • Yilin Hou

    (Xi’an Boiler & Environmental Protection Engineering Co., Ltd., Xi’an 710054, China
    Huaneng Yangtze Environmental Technology Co., Ltd., Beijing 100031, China)

  • Wenjin Zhao

    (College of New Energy and Environment, Jilin University, Changchun 130012, China)

  • Hui Na

    (Alan G. MacDiarmid Institute, Jilin University, Changchun 130012, China)

Abstract

Plastics, as a polymer material, have long been a source of environmental concern. This paper uses polystyrene plastics as the research object, and the relative contribution of each component of plastic additives to plastic degradation is screened using the molecular dynamics method. The factorial experimental design method is combined with molecular dynamics simulation to adjust the additive composition scheme, analyze the mechanism of interaction between the additive components, and select the plastic additive combination that is most readily absorbed and degraded by microorganisms. Seven different types of plastic additives, including plasticizers, antioxidants, light and heat stabilizers, flame retardants, lubricants, and fillers, are chosen as external stimuli affecting the biodegradability of plastics. Using molecular dynamics simulation technology, it is demonstrated that plastic additives can promote the biodegradability of plastics. The factorial experimental design analysis revealed that all plastic additives can promote plastic biodegradation and plasticizer is the most favorable factor affecting plastic degradation, that hydrophobicity interactions are the primary reason for enhancing plastic degradation, and that screening No. 116–45 (plasticizer A, light stabilizer C, flame retardant E) is the most advantageous combination of biodegradable plastic additives. The plastic biodegradation effect regulation scheme proposed in this study is based on optimizing the proportion of additive components. To continue research on aquatic biodegradable plastics, the optimal combination of plastic components that can be absorbed and degraded by microorganisms is recommended.

Suggested Citation

  • Haigang Zhang & Yilin Hou & Wenjin Zhao & Hui Na, 2022. "Control Strategies of Plastic Biodegradation through Adjusting Additives Ratios Using In Silico Approaches Associated with Proportional Factorial Experimental Design," IJERPH, MDPI, vol. 19(9), pages 1-16, May.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:9:p:5670-:d:809896
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/9/5670/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/9/5670/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Claudia Campanale & Carmine Massarelli & Ilaria Savino & Vito Locaputo & Vito Felice Uricchio, 2020. "A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health," IJERPH, MDPI, vol. 17(4), pages 1-26, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Isabella Gambino & Francesco Bagordo & Tiziana Grassi & Alessandra Panico & Antonella De Donno, 2022. "Occurrence of Microplastics in Tap and Bottled Water: Current Knowledge," IJERPH, MDPI, vol. 19(9), pages 1-15, April.
    2. Carmen Rubio-Armendáriz & Samuel Alejandro-Vega & Soraya Paz-Montelongo & Ángel J. Gutiérrez-Fernández & Conrado J. Carrascosa-Iruzubieta & Arturo Hardisson-de la Torre, 2022. "Microplastics as Emerging Food Contaminants: A Challenge for Food Safety," IJERPH, MDPI, vol. 19(3), pages 1-14, January.
    3. Sri Widyastuti & Angga Susmana Abidin & Hikmaturrohmi Hikmaturrohmi & Bq Tri Khairina Ilhami & Nanda Sofian Hadi Kurniawan & Ahmad Jupri & Dining Aidil Candri & Andri Frediansyah & Eka Sunarwidhi Pras, 2023. "Microplastic Contamination in Different Marine Species of Bintaro Fish Market, Indonesia," Sustainability, MDPI, vol. 15(12), pages 1-14, June.
    4. Diogo A. Ferreira-Filipe & Ana Paço & Armando C. Duarte & Teresa Rocha-Santos & Ana L. Patrício Silva, 2021. "Are Biobased Plastics Green Alternatives?—A Critical Review," IJERPH, MDPI, vol. 18(15), pages 1-16, July.
    5. Andreas Brachner & Despina Fragouli & Iola F. Duarte & Patricia M. A. Farias & Sofia Dembski & Manosij Ghosh & Ivan Barisic & Daniela Zdzieblo & Jeroen Vanoirbeek & Philipp Schwabl & Winfried Neuhaus, 2020. "Assessment of Human Health Risks Posed by Nano-and Microplastics Is Currently Not Feasible," IJERPH, MDPI, vol. 17(23), pages 1-10, November.
    6. Gonca Alak & Mine Köktürk & Muhammed Atamanalp & Esat Mahmut Kocaman & Arzu Ucar & Nurinisa Esenbuğa & Sinan Özcan & Veysel Parlak, 2023. "Microplastic Abundance in Rainbow Trout Life Cycle: Step by Step," Sustainability, MDPI, vol. 15(19), pages 1-12, September.
    7. Claudia Campanale & Daniela Losacco & Mariangela Triozzi & Carmine Massarelli & Vito Felice Uricchio, 2022. "An Overall Perspective for the Study of Emerging Contaminants in Karst Aquifers," Resources, MDPI, vol. 11(11), pages 1-21, November.
    8. Chunhui Wang & Junhong Tang & Haixia Yu & Yiyi Wang & Huanxuan Li & Shaodan Xu & Gang Li & Qian Zhou, 2022. "Microplastic Pollution in the Soil Environment: Characteristics, Influencing Factors, and Risks," Sustainability, MDPI, vol. 14(20), pages 1-14, October.
    9. Shampa Ghosh & Jitendra Kumar Sinha & Soumya Ghosh & Kshitij Vashisth & Sungsoo Han & Rakesh Bhaskar, 2023. "Microplastics as an Emerging Threat to the Global Environment and Human Health," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    10. Antonio Ragusa & Maria Matta & Loredana Cristiano & Roberto Matassa & Ezio Battaglione & Alessandro Svelato & Caterina De Luca & Sara D’Avino & Alessandra Gulotta & Mauro Ciro Antonio Rongioletti & Pi, 2022. "Deeply in Plasticenta: Presence of Microplastics in the Intracellular Compartment of Human Placentas," IJERPH, MDPI, vol. 19(18), pages 1-22, September.
    11. Erik D. Slawsky & Joel C. Hoffman & Kristen N. Cowan & Kristen M. Rappazzo, 2022. "Beneficial Use Impairments, Degradation of Aesthetics, and Human Health: A Review," IJERPH, MDPI, vol. 19(10), pages 1-17, May.
    12. Stefania D'Angelo & Rosaria Meccariello, 2021. "Microplastics: A Threat for Male Fertility," IJERPH, MDPI, vol. 18(5), pages 1-11, March.
    13. Adam Krajewski & Agnieszka Hejduk & Leszek Hejduk, 2022. "First Evidence of Microplastic Presence in Bed Load Sediments of a Small Urban Stream in Warsaw," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    14. Edris Bazrafshan & Hamid Reza Zakeri & Melissa Gurgel Adeodato Vieira & Zahra Derakhshan & Leili Mohammadi & Amin Mohammadpour & Amin Mousavi Khaneghah, 2022. "Slaughterhouse Wastewater Treatment by Integrated Chemical Coagulation and Electro-Fenton Processes," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    15. Thanh T. Nguyen & Buddhima Indraratna, 2023. "Natural Fibre for Geotechnical Applications: Concepts, Achievements and Challenges," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    16. Leonardo Alberghini & Alessandro Truant & Serena Santonicola & Giampaolo Colavita & Valerio Giaccone, 2022. "Microplastics in Fish and Fishery Products and Risks for Human Health: A Review," IJERPH, MDPI, vol. 20(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:9:p:5670-:d:809896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.