Spatiotemporal Heterogeneity and the Key Influencing Factors of PM 2.5 and PM 10 in Heilongjiang, China from 2014 to 2018
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lianfa Li & Jiehao Zhang & Wenyang Qiu & Jinfeng Wang & Ying Fang, 2017. "An Ensemble Spatiotemporal Model for Predicting PM 2.5 Concentrations," IJERPH, MDPI, vol. 14(5), pages 1-20, May.
- Pulugurtha, Srinivas S. & Mathew, Sonu, 2021. "Modeling AADT on local functionally classified roads using land use, road density, and nearest nonlocal road data," Journal of Transport Geography, Elsevier, vol. 93(C).
- Feng Xu & Nan Xiang & Yoshiro Higano, 2017. "How to reach haze control targets by air pollutants emission reduction in the Beijing-Tianjin-Hebei region of China?," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-14, March.
- Sang Won Choi & Brian H. S. Kim, 2021. "Applying PCA to Deep Learning Forecasting Models for Predicting PM 2.5," Sustainability, MDPI, vol. 13(7), pages 1-30, March.
- Yee Leung & Chang-Lin Mei & Wen-Xiu Zhang, 2000. "Statistical Tests for Spatial Nonstationarity Based on the Geographically Weighted Regression Model," Environment and Planning A, , vol. 32(1), pages 9-32, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qingbin Wei & Lianjun Zhang & Wenbiao Duan & Zhen Zhen, 2019. "Global and Geographically and Temporally Weighted Regression Models for Modeling PM 2.5 in Heilongjiang, China from 2015 to 2018," IJERPH, MDPI, vol. 16(24), pages 1-20, December.
- Marques, Samuel de França & Pitombo, Cira Souza, 2023. "Local modeling as a solution to the lack of stop-level ridership data," Journal of Transport Geography, Elsevier, vol. 112(C).
- Diana Gutiérrez Posada & Fernando Rubiera Morollón & Ana Viñuela, 2018. "Ageing Places in an Ageing Country: The Local Dynamics of the Elderly Population in Spain," Tijdschrift voor Economische en Sociale Geografie, Royal Dutch Geographical Society KNAG, vol. 109(3), pages 332-349, July.
- Marco Helbich & Wolfgang Brunauer & Eric Vaz & Peter Nijkamp, 2014.
"Spatial Heterogeneity in Hedonic House Price Models: The Case of Austria,"
Urban Studies, Urban Studies Journal Limited, vol. 51(2), pages 390-411, February.
- Marco Helbich & Wolfgang Brunauer & Eric Vaz & Peter Nijkamp, 2013. "Spatial Heterogeneity in Hedonic House Price Models: The Case of Austria," Tinbergen Institute Discussion Papers 13-171/VIII, Tinbergen Institute.
- John Mulo & Hengshuo Liang & Mian Qian & Milon Biswas & Bharat Rawal & Yifan Guo & Wei Yu, 2025. "Navigating Challenges and Harnessing Opportunities: Deep Learning Applications in Internet of Medical Things," Future Internet, MDPI, vol. 17(3), pages 1-48, March.
- Li, Bao-Gen & Ling, Dian-Yi & Yu, Zu-Guo, 2021. "Multifractal temporally weighted detrended partial cross-correlation analysis of two non-stationary time series affected by common external factors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
- Katharina Pijnenburg, 2013. "Self-Employment and Economic Performance: A Geographically Weighted Regression Approach for European Regions," Discussion Papers of DIW Berlin 1272, DIW Berlin, German Institute for Economic Research.
- repec:rre:publsh:v:51:y:2021:i:2 is not listed on IDEAS
- Gollini, Isabella & Lu, Binbin & Charlton, Martin & Brunsdon, Christopher & Harris, Paul, 2015. "GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i17).
- Sven Müller, 2012. "Identifying spatial nonstationarity in German regional firm start-up data," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 32(2), pages 113-132, September.
- Wei, Chuan-Hua & Qi, Fei, 2012. "On the estimation and testing of mixed geographically weighted regression models," Economic Modelling, Elsevier, vol. 29(6), pages 2615-2620.
- Elżbieta Antczak & Katarzyna M. Miszczyńska, 2021. "Causes of Sickness Absenteeism in Europe—Analysis from an Intercountry and Gender Perspective," IJERPH, MDPI, vol. 18(22), pages 1-22, November.
- Fan Liu & Min Min & Ke Zhao & Weiyan Hu, 2020. "Spatial-Temporal Variation in the Impacts of Urban Infrastructure on Housing Prices in Wuhan, China," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
- Julie Le Gallo, 2000. "Spatial econometrics (2, Spatial heterogeneity) [Econométrie spatiale (2, Hétérogénéité spatiale)]," Working Papers hal-01526969, HAL.
- Yee Leung & Chang-Lin Mei & Wen-Xiu Zhang, 2000. "Testing for Spatial Autocorrelation among the Residuals of the Geographically Weighted Regression," Environment and Planning A, , vol. 32(5), pages 871-890, May.
- Yufei Fang & Zhiguang Shan, 2022. "How to Promote a Smart City Effectively? An Evaluation Model and Efficiency Analysis of Smart Cities in China," Sustainability, MDPI, vol. 14(11), pages 1-23, May.
- Li, Xijing & Zhang, Mengmeng & Wang, Jionghua, 2022. "The spatio-temporal relationship between land use and population distribution around new intercity railway stations: A case study on the Pearl River Delta region, China," Journal of Transport Geography, Elsevier, vol. 98(C).
- Antonio Páez & Takashi Uchida & Kazuaki Miyamoto, 2002. "A General Framework for Estimation and Inference of Geographically Weighted Regression Models: 1. Location-Specific Kernel Bandwidths and a Test for Locational Heterogeneity," Environment and Planning A, , vol. 34(4), pages 733-754, April.
- Li, Deng-Kui & Mei, Chang-Lin & Wang, Ning, 2019. "Tests for spatial dependence and heterogeneity in spatially autoregressive varying coefficient models with application to Boston house price analysis," Regional Science and Urban Economics, Elsevier, vol. 79(C).
- Bumsoo Lee & Peter Gordon, 2010. "Urban Structure: It's Role in Urban Growth, Net New Business Formation and Industrial Churn," Working Paper 8515, USC Lusk Center for Real Estate.
- Ricardo Crespo & Adrienne Grêt-Regamey, 2013. "Local Hedonic House-Price Modelling for Urban Planners: Advantages of Using Local Regression Techniques," Environment and Planning B, , vol. 40(4), pages 664-682, August.
More about this item
Keywords
PCA; GTWR; GWR; TWR; particulate matter; meteorological factors; NDVI;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11627-:d:915805. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.