IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i15p9497-d878568.html
   My bibliography  Save this article

Rainstorm Disaster Risk Assessment and Influence Factors Analysis in the Yangtze River Delta, China

Author

Listed:
  • Menghua Deng

    (Business School, Hohai University, Nanjing 210098, China
    Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, China)

  • Zhiqi Li

    (Business School, Hohai University, Nanjing 210098, China)

  • Feifei Tao

    (College of Computer and Information, Hohai University, Nanjing 210098, China)

Abstract

Rainstorm disasters have had a serious impact on the sustainable development of society and the economy. However, due to the complexity of rainstorm disasters, it is difficult to measure the importance of each indicator. In this paper, the rainstorm disaster risk assessment framework was systematically proposed based on the disaster system theory and a system of corresponding indicators was established. Furthermore, the genetic algorithm optimized projection pursuit and XGBoost were coupled to assess the rainstorm disaster risk and to measure the relative importance of each indicator. Finally, the Yangtze River Delta was taken as the case study area. The results show that: the rainstorm disaster risk in the eastern and southeast is higher than those in the central and northwest of the Yangtze River Delta; the total precipitation from June to September and the top ten indicators contribute 9.34% and 74.20% to the rainstorm disaster risk assessment results, respectively. The results can provide references for decision makers and are helpful for the formulation of rainstorm adaptation strategies.

Suggested Citation

  • Menghua Deng & Zhiqi Li & Feifei Tao, 2022. "Rainstorm Disaster Risk Assessment and Influence Factors Analysis in the Yangtze River Delta, China," IJERPH, MDPI, vol. 19(15), pages 1-16, August.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:15:p:9497-:d:878568
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/15/9497/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/15/9497/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huafei Yu & Yaolong Zhao & Yingchun Fu, 2019. "Optimization of Impervious Surface Space Layout for Prevention of Urban Rainstorm Waterlogging: A Case Study of Guangzhou, China," IJERPH, MDPI, vol. 16(19), pages 1-28, September.
    2. Eric Bradford & Artur M. Schweidtmann & Alexei Lapkin, 2018. "Correction to: Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm," Journal of Global Optimization, Springer, vol. 71(2), pages 439-440, June.
    3. Junfei Chen & Juan Ji & Huimin Wang & Menghua Deng & Cong Yu, 2020. "Risk Assessment of Urban Rainstorm Disaster Based on Multi-Layer Weighted Principal Component Analysis: A Case Study of Nanjing, China," IJERPH, MDPI, vol. 17(15), pages 1-19, July.
    4. Menghua Deng & Junfei Chen & Feifei Tao & Jiulong Zhu & Min Wang, 2022. "On the Coupling and Coordination Development between Environment and Economy: A Case Study in the Yangtze River Delta of China," IJERPH, MDPI, vol. 19(1), pages 1-20, January.
    5. Zaohong Liu & Zhangzejun Jiang & Chen Xu & Guanjun Cai & Jian Zhan, 2021. "Assessment of provincial waterlogging risk based on entropy weight TOPSIS–PCA method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 1545-1567, September.
    6. Junfei Chen & Mengchen Chen & Pei Zhou, 2020. "Using Multiple Index Comprehensive Method to Assess Urban Rainstorm Disaster Risk in Jiangsu Province, China," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-10, July.
    7. Myles R. Allen & William J. Ingram, 2012. "Correction: Corrigendum: Constraints on future changes in climate and the hydrologic cycle," Nature, Nature, vol. 489(7417), pages 590-590, September.
    8. B. Tellman & J. A. Sullivan & C. Kuhn & A. J. Kettner & C. S. Doyle & G. R. Brakenridge & T. A. Erickson & D. A. Slayback, 2021. "Satellite imaging reveals increased proportion of population exposed to floods," Nature, Nature, vol. 596(7870), pages 80-86, August.
    9. Junfei Chen & Liming Liu & Jinpeng Pei & Menghua Deng, 2021. "An ensemble risk assessment model for urban rainstorm disasters based on random forest and deep belief nets: a case study of Nanjing, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2671-2692, July.
    10. Eric Bradford & Artur M. Schweidtmann & Alexei Lapkin, 2018. "Efficient multiobjective optimization employing Gaussian processes, spectral sampling and a genetic algorithm," Journal of Global Optimization, Springer, vol. 71(2), pages 407-438, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuming Wang & Xianrui Yu & Xiaobing Yu, 2022. "Flood Disaster Risk Assessment Based on DEA Model in Southeast Asia along “The Belt and Road”," Sustainability, MDPI, vol. 14(20), pages 1-10, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mo Wang & Xiaoping Fu & Dongqing Zhang & Siwei Lou & Jianjun Li & Furong Chen & Shan Li & Soon Keat Tan, 2023. "Urban agglomeration waterlogging hazard exposure assessment based on an integrated Naive Bayes classifier and complex network analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2173-2197, September.
    2. Hwang, Junhyeok & Kim, Jeongnam & Lee, Hee Won & Na, Jonggeol & Ahn, Byoung Sung & Lee, Sang Deuk & Kim, Hoon Sik & Lee, Hyunjoo & Lee, Ung, 2019. "An experimental based optimization of a novel water lean amine solvent for post combustion CO2 capture process," Applied Energy, Elsevier, vol. 248(C), pages 174-184.
    3. Baklouti, Ahmad & Dammak, Khalil & El Hami, Abdelkhalak, 2022. "Optimum reliable design of rolling element bearings using multi-objective optimization based on C-NSGA-II," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    4. Jamie A. Manson & Thomas W. Chamberlain & Richard A. Bourne, 2021. "MVMOO: Mixed variable multi-objective optimisation," Journal of Global Optimization, Springer, vol. 80(4), pages 865-886, August.
    5. Menghua Deng & Junfei Chen & Feifei Tao & Jiulong Zhu & Min Wang, 2022. "On the Coupling and Coordination Development between Environment and Economy: A Case Study in the Yangtze River Delta of China," IJERPH, MDPI, vol. 19(1), pages 1-20, January.
    6. David Stenger & Robert Ritschel & Felix Krabbes & Rick Voßwinkel & Hendrik Richter, 2023. "What Is the Best Way to Optimally Parameterize the MPC Cost Function for Vehicle Guidance?," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    7. Thebelt, Alexander & Tsay, Calvin & Lee, Robert M. & Sudermann-Merx, Nathan & Walz, David & Tranter, Tom & Misener, Ruth, 2022. "Multi-objective constrained optimization for energy applications via tree ensembles," Applied Energy, Elsevier, vol. 306(PB).
    8. He Liu & Xueming Li, 2022. "Understanding the Driving Factors for Urban Human Settlement Vitality at Street Level: A Case Study of Dalian, China," Land, MDPI, vol. 11(5), pages 1-20, April.
    9. Audet, Charles & Bigeon, Jean & Cartier, Dominique & Le Digabel, Sébastien & Salomon, Ludovic, 2021. "Performance indicators in multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 292(2), pages 397-422.
    10. Sean Fox & Felix Agyemang & Laurence Hawker & Jeffrey Neal, 2024. "Integrating social vulnerability into high-resolution global flood risk mapping," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Xueru Pang & Yuquan Zhou & Yiting Zhu & Chunshan Zhou, 2023. "Exploring the Coordination and Spatial–Temporal Characteristics of the Tourism–Economy–Environment Development in the Pearl River Delta Urban Agglomeration, China," IJERPH, MDPI, vol. 20(3), pages 1-24, January.
    12. Zhen Yang & Weijun Gao, 2022. "Evaluating the Coordinated Development between Urban Greening and Economic Growth in Chinese Cities during 2005 to 2019," IJERPH, MDPI, vol. 19(15), pages 1-25, August.
    13. Caroline Taylor & Tom R. Robinson & Stuart Dunning & J. Rachel Carr & Matthew Westoby, 2023. "Glacial lake outburst floods threaten millions globally," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Cheng He & Yixiang Zhu & Lu Zhou & Jovine Bachwenkizi & Alexandra Schneider & Renjie Chen & Haidong Kan, 2024. "Flood exposure and pregnancy loss in 33 developing countries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    15. Hongshi Xu & Kui Xu & Tianye Wang & Wanjie Xue, 2022. "Investigating Flood Risks of Rainfall and Storm Tides Affected by the Parameter Estimation Coupling Bivariate Statistics and Hydrodynamic Models in the Coastal City," IJERPH, MDPI, vol. 19(19), pages 1-18, October.
    16. Sheng Cheng & Liqun Liu & Ke Li, 2020. "Explaining the Factors Influencing the Individuals’ Continuance Intention to Seek Information on Weibo during Rainstorm Disasters," IJERPH, MDPI, vol. 17(17), pages 1-16, August.
    17. Jiawei Wu & Wei Sun, 2023. "Regional Integration and Sustainable Development in the Yangtze River Delta, China: Towards a Conceptual Framework and Research Agenda," Land, MDPI, vol. 12(2), pages 1-20, February.
    18. Marcel Henkel, Eunjee Kwon, Pierre Magontier, 2022. "The Unintended Consequences of Post-Disaster Policies for Spatial Sorting," Diskussionsschriften credresearchpaper37, Universitaet Bern, Departement Volkswirtschaft - CRED.
    19. Pallavi Tomar & Suraj Kumar Singh & Shruti Kanga & Gowhar Meraj & Nikola Kranjčić & Bojan Đurin & Amitanshu Pattanaik, 2021. "GIS-Based Urban Flood Risk Assessment and Management—A Case Study of Delhi National Capital Territory (NCT), India," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    20. Xiaoxue Wei & Rui Zhao & Jie Xu, 2023. "Spatiotemporal Evolution, Coupling Coordination Degree and Obstacle Factors of Urban High-Quality Development: A Case Study of Anhui Province," Sustainability, MDPI, vol. 15(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:15:p:9497-:d:878568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.