IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i10p6095-d817492.html
   My bibliography  Save this article

Simulation of Land-Use Spatiotemporal Changes under Ecological Quality Constraints: The Case of the Wuhan Urban Agglomeration Area, China, over 2020–2030

Author

Listed:
  • Jingye Li

    (Department of Land Resource Management, School of Public Administration, China University of Geosciences, Wuhan 430074, China)

  • Jian Gong

    (Department of Land Resource Management, School of Public Administration, China University of Geosciences, Wuhan 430074, China)

  • Jean-Michel Guldmann

    (Department of City and Regional Planning, The Ohio State University, Columbus, OH 43210, USA)

  • Jianxin Yang

    (Department of Land Resource Management, School of Public Administration, China University of Geosciences, Wuhan 430074, China)

  • Zhong Zhang

    (Department of Land Resource Management, School of Public Administration, China University of Geosciences, Wuhan 430074, China)

Abstract

Human activities coupled with land-use change pose a threat to the regional ecological environment. Therefore, it is essential to determine the future land-use structure and spatial layout for ecological protection and sustainable development. Land use simulations based on traditional scenarios do not fully consider ecological protection, leading to urban sprawl. Timely and dynamic monitoring of ecological status and change is vital to managing and protecting urban ecology and sustainable development. Remote sensing indices, including greenness, humidity, dryness, and heat, are calculated annually. This method compensates for data loss and difficulty in stitching remote sensing ecological indices over large-scale areas and long time-series. Herein, a framework is developed by integrating the four above-mentioned indices for a rapid, large-scale prediction of land use/cover that incorporates the protection of high ecological quality zone (HEQZ) land. The Google Earth Engine (GEE) platform is used to build a comprehensive HEQZ map of the Wuhan Urban Agglomeration Area (WUAA). Two scenarios are considered: Ecological protection (EP) based on HEQZ and natural growth (NG) without spatial ecological constraints. Land use/cover in the WUAA is predicted over 2020–2030, using the patch-generating land use simulation (PLUS) model. The results show that: (1) the HEQZ area covers 21,456 km 2 , accounting for 24% of the WUAA, and is mainly distributed in the Xianning, Huangshi, and Xiantao regions. Construction land has the highest growth rate (5.2%) under the NG scenario. The cropland area decreases by 3.2%, followed by woodlands (0.62%). (2) By delineating the HEQZ, woodlands, rivers, lakes, and wetlands are well protected; construction land displays a downward trend based on the EP scenario with the HEQZ, and the simulated construction land in 2030 is located outside the HEQZ. (3) Image processing based on GEE cloud computing can ameliorate the difficulties of remote sensing data (i.e., missing data, cloudiness, chromatic aberration, and time inconsistency). The results of this study can provide essential scientific guidance for territorial spatial planning under the premise of ecological security.

Suggested Citation

  • Jingye Li & Jian Gong & Jean-Michel Guldmann & Jianxin Yang & Zhong Zhang, 2022. "Simulation of Land-Use Spatiotemporal Changes under Ecological Quality Constraints: The Case of the Wuhan Urban Agglomeration Area, China, over 2020–2030," IJERPH, MDPI, vol. 19(10), pages 1-19, May.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:10:p:6095-:d:817492
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/10/6095/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/10/6095/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Felix Creutzig, 2017. "Govern land as a global commons," Nature, Nature, vol. 546(7656), pages 28-29, June.
    2. Mansour, Shawky & Al-Belushi, Mohammed & Al-Awadhi, Talal, 2020. "Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques," Land Use Policy, Elsevier, vol. 91(C).
    3. Rob Van Tulder & Suzana B. Rodrigues & Hafiz Mirza & Kathleen Sexsmith, 2021. "The UN’s Sustainable Development Goals: Can multinational enterprises lead the Decade of Action?," Journal of International Business Policy, Palgrave Macmillan, vol. 4(1), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingyang Nan & Jun Chen, 2022. "Research Progress, Hotspots and Trends of Land Use under the Background of Ecological Civilization in China: Visual Analysis Based on the CNKI Database," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    2. Min Wang & Kongtao Qin & Yanhong Jia & Xiaohan Yuan & Shuqi Yang, 2022. "Land Use Transition and Eco-Environmental Effects in Karst Mountain Area Based on Production-Living-Ecological Space: A Case Study of Longlin Multinational Autonomous County, Southwest China," IJERPH, MDPI, vol. 19(13), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin T. Phalan, 2018. "What Have We Learned from the Land Sparing-sharing Model?," Sustainability, MDPI, vol. 10(6), pages 1-24, May.
    2. Qing Liu & Dongdong Yang & Lei Cao & Bruce Anderson, 2022. "Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Tropics: A Case Study of Hainan Island, China," Land, MDPI, vol. 11(2), pages 1-24, February.
    3. Zhang, Zuo & Li, Jiaming, 2022. "Spatial suitability and multi-scenarios for land use: Simulation and policy insights from the production-living-ecological perspective," Land Use Policy, Elsevier, vol. 119(C).
    4. Ivan Montiel & Junghoon Park & Bryan W. Husted & Andres Velez-Calle, 2022. "Tracing the connections between international business and communicable diseases," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 53(8), pages 1785-1804, October.
    5. Abdulaziz I. Almulhim & Simon Elias Bibri & Ayyoob Sharifi & Shakil Ahmad & Khalid Mohammed Almatar, 2022. "Emerging Trends and Knowledge Structures of Urbanization and Environmental Sustainability: A Regional Perspective," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
    6. Yangyang Yuan & Yuchen Yang & Ruijun Wang & Yuning Cheng, 2022. "Predicting Rural Ecological Space Boundaries in the Urban Fringe Area Based on Bayesian Network: A Case Study in Nanjing, China," Land, MDPI, vol. 11(11), pages 1-24, October.
    7. Pei Sun & Jonathan P. Doh & Tazeeb Rajwani & Donald Siegel, 2021. "Navigating cross-border institutional complexity: A review and assessment of multinational nonmarket strategy research," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 52(9), pages 1818-1853, December.
    8. Milad Asadi & Amir Oshnooei-Nooshabadi & Samira-Sadat Saleh & Fattaneh Habibnezhad & Sonia Sarafraz-Asbagh & John Lodewijk Van Genderen, 2022. "Urban Sprawl Simulation Mapping of Urmia (Iran) by Comparison of Cellular Automata–Markov Chain and Artificial Neural Network (ANN) Modeling Approach," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    9. Creutzig, Felix, 2020. "Limits to Liberalism: Considerations for the Anthropocene," Ecological Economics, Elsevier, vol. 177(C).
    10. Changqing Sun & Yulong Bao & Battsengel Vandansambuu & Yuhai Bao, 2022. "Simulation and Prediction of Land Use/Cover Changes Based on CLUE-S and CA-Markov Models: A Case Study of a Typical Pastoral Area in Mongolia," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    11. Wil Burns & Simon Nicholson, 2017. "Bioenergy and carbon capture with storage (BECCS): the prospects and challenges of an emerging climate policy response," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 7(4), pages 527-534, December.
    12. Tianlin Zhai & Jing Wang & Ying Fang & Jingjing Liu & Longyang Huang & Kun Chen & Chenchen Zhao, 2021. "Identification and Prediction of Wetland Ecological Risk in Key Cities of the Yangtze River Economic Belt: From the Perspective of Land Development," Sustainability, MDPI, vol. 13(1), pages 1-17, January.
    13. Yunzhi Zhang & Tongyan Zheng & Chen Yu & Jing Ren & Xuegang Gong & Hao Wang & Yihao Duan, 2023. "Multi-Perspective Analysis of Land Changes in the Transitional Zone between the Mu Us Desert and the Loess Plateau in China from 2000 to 2020," Land, MDPI, vol. 12(5), pages 1-16, May.
    14. Anna Galik & Monika Bąk & Katarzyna Bałandynowicz-Panfil & Giuseppe T. Cirella, 2022. "Evaluating Labour Market Flexibility Using the TOPSIS Method: Sustainable Industrial Relations," Sustainability, MDPI, vol. 14(1), pages 1-20, January.
    15. Bao Meng & Xuxi Wang & Zhifeng Zhang & Pei Huang, 2022. "Spatio-Temporal Pattern and Driving Force Evolution of Cultivated Land Occupied by Urban Expansion in the Chengdu Metropolitan Area," Land, MDPI, vol. 11(9), pages 1-17, September.
    16. Kiefner, Valentin & Mohr, Alexander & Schumacher, Christian, 2022. "Female executives and multinationals’ support of the UN's sustainable development goals," Journal of World Business, Elsevier, vol. 57(3).
    17. Hebing Zhang & Qingqing Yan & Fangfang Xie & Shouchen Ma, 2023. "Evaluation and Prediction of Landscape Ecological Security Based on a CA-Markov Model in Overlapped Area of Crop and Coal Production," Land, MDPI, vol. 12(1), pages 1-18, January.
    18. Wang, Quan & Wang, Haijun & Chang, Ruihan & Zeng, Haoran & Bai, Xuepiao, 2022. "Dynamic simulation patterns and spatiotemporal analysis of land-use/land-cover changes in the Wuhan metropolitan area, China," Ecological Modelling, Elsevier, vol. 464(C).
    19. Stankovics, Petra & Montanarella, Luca & Kassai, Piroska & Tóth, Gergely & Tóth, Zoltán, 2020. "The interrelations of land ownership, soil protection and privileges of capital in the aspect of land take," Land Use Policy, Elsevier, vol. 99(C).
    20. Zhao Wang & Tao Li & Shan Yang & Daili Zhong, 2022. "Spatio-Temporal Dynamic and Structural Characteristics of Land Use/Cover Change Based on a Complex Network: A Case Study of the Middle Reaches of Yangtze River Urban Agglomeration," Sustainability, MDPI, vol. 14(11), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:10:p:6095-:d:817492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.