IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i15p7780-d599306.html
   My bibliography  Save this article

DEEP SCOPE: A Framework for Safe Healthcare Design

Author

Listed:
  • Ellen Taylor

    (The Center for Health Design, Concord, CA 94520, USA)

  • Sue Hignett

    (Design School, Loughborough University, Leicestershire LE11 3TU, UK)

Abstract

Thinking in patient safety has evolved over time from more simplistic accident causation models to more robust frameworks of work system design. Throughout this evolution, less consideration has been given to the role of the built environment in supporting safety. The aim of this paper is to theoretically explore how we think about harm as a systems problem by mitigating the risk of adverse events through proactive healthcare facility design. We review the evolution of thinking in safety as a safety science. Using falls as a case study topic, we use a previously published model (SCOPE: Safety as Complexity of the Organization, People, and Environment) to develop an expanded framework. The resulting theoretical model and matrix, DEEP SCOPE (DEsigning with Ergonomic Principles), provide a way to synthesize design interventions into a systems-based model for healthcare facility design using human factors/ergonomics (HF/E) design principles. The DEEP SCOPE matrix is proposed to highlight the design of safe healthcare facilities as an ergonomic problem of design that fits the environment to the user by understanding built environments that support the “human” factor.

Suggested Citation

  • Ellen Taylor & Sue Hignett, 2021. "DEEP SCOPE: A Framework for Safe Healthcare Design," IJERPH, MDPI, vol. 18(15), pages 1-14, July.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:15:p:7780-:d:599306
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/15/7780/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/15/7780/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Provan, David J. & Woods, David D. & Dekker, Sidney W.A. & Rae, Andrew J., 2020. "Safety II professionals: How resilience engineering can transform safety practice," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Melissa Piatkowski & Ellen Taylor & Bob Wong & Dorothy Taylor & K. Bo Foreman & Andrew Merryweather, 2021. "Designing a Patient Room as a Fall Protection Strategy: The Perspectives of Healthcare Design Experts," IJERPH, MDPI, vol. 18(16), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Love, Peter E.D. & Matthews, Jane, 2020. "Quality, requisite imagination and resilience: Managing risk and uncertainty in construction," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    3. Hadi Alizadeh & Ayyoob Sharifi, 2020. "Assessing Resilience of Urban Critical Infrastructure Networks: A Case Study of Ahvaz, Iran," Sustainability, MDPI, vol. 12(9), pages 1-20, May.
    4. Sonal, & Ghosh, Debomita, 2022. "Impact of situational awareness attributes for resilience assessment of active distribution networks using hybrid dynamic Bayesian multi criteria decision-making approach," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Mitchell Caroline & Strevens Caroline & Labib Ashraf & Van Laar Darren, 2023. "No Harm in Learning – A Balanced High Reliability Organisation (HRO) Approach in Healthcare," Journal of Social and Economic Statistics, Sciendo, vol. 12(2), pages 1-19, December.
    6. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Ben Riemersma & Rolf Künneke & Genserik Reniers & Aad Correljé, 2020. "Upholding Safety in Future Energy Systems: The Need for Systemic Risk Assessment," Energies, MDPI, vol. 13(24), pages 1-20, December.
    8. Federica De Leo & Valerio Elia & Maria Grazia Gnoni & Fabiana Tornese, 2023. "Integrating Safety-I and Safety-II Approaches in Near Miss Management: A Critical Analysis," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    9. Foster, Craig J. & Plant, Katherine L. & Stanton, Neville A., 2021. "A very temporary operating instruction: Uncovering emergence and adaptation in air traffic control," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    10. Simsekler, Mecit Can Emre & Qazi, Abroon & Alalami, Mohammad Amjad & Ellahham, Samer & Ozonoff, Al, 2020. "Evaluation of patient safety culture using a random forest algorithm," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    11. Adhita, I Gde Manik Sukanegara & Fuchi, Masaki & Konishi, Tsukasa & Fujimoto, Shoji, 2023. "Ship navigation from a Safety-II perspective: A case study of training-ship operation in coastal area," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    12. Varajão, João & Fernandes, Gabriela & Amaral, António & Gonçalves, A. Manuela, 2021. "Team Resilience Model: An Empirical Examination of Information Systems Projects," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    13. Zheng Zhu & Jingfeng Yuan & Qiuhu Shao & Lei Zhang & Guangqi Wang & Xuewei Li, 2020. "Developing Key Safety Management Factors for Construction Projects in China: A Resilience Perspective," IJERPH, MDPI, vol. 17(17), pages 1-20, August.
    14. Xiao, Jun & Qu, Yuqing & She, Buxin & Song, Chenhui, 2023. "Operational boundary of flow network," Reliability Engineering and System Safety, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:15:p:7780-:d:599306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.