IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i12p6312-d572931.html
   My bibliography  Save this article

SARS-CoV-2: An Overview of Virus Genetics, Transmission, and Immunopathogenesis

Author

Listed:
  • Mohamed A. Farrag

    (Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia)

  • Haitham M. Amer

    (Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt)

  • Rauf Bhat

    (Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia)

  • Maaweya E. Hamed

    (Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia)

  • Ibrahim M. Aziz

    (Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia)

  • Ayman Mubarak

    (Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia)

  • Turki M Dawoud

    (Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia)

  • Sami G Almalki

    (Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia)

  • Fayez Alghofaili

    (Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia)

  • Ahmad K. Alnemare

    (Otolaryngology Department, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia)

  • Raid Saleem Al-Baradi

    (Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia)

  • Bandar Alosaimi

    (Research Center, King Fahad Medical City, Riyadh 11525, Saudi Arabia)

  • Wael Alturaiki

    (Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia)

Abstract

The human population is currently facing the third and possibly the worst pandemic caused by human coronaviruses (CoVs). The virus was first reported in Wuhan, China, on 31 December 2019 and spread within a short time to almost all countries of the world. Genome analysis of the early virus isolates has revealed high similarity with SARS-CoV and hence the new virus was officially named SARS-CoV-2. Since CoVs have the largest genome among all RNA viruses, they can adapt to many point mutation and recombination events; particularly in the spike gene, which enable these viruses to rapidly change and evolve in nature. CoVs are known to cross the species boundaries by using different cellular receptors. Both animal reservoir and intermediate host for SARS-CoV-2 are still unresolved and necessitate further investigation. In the current review, different aspects of SARS-CoV-2 biology and pathogenicity are discussed, including virus genetics and evolution, spike protein and its role in evolution and adaptation to novel hosts, and virus transmission and persistence in nature. In addition, the immune response developed during SARS-CoV-2 infection is demonstrated with special reference to the interplay between immune cells and their role in disease progression. We believe that the SARS-CoV-2 outbreak will not be the last and spillover of CoVs from bats will continue. Therefore, establishing intervention approaches to reduce the likelihood of future CoVs spillover from natural reservoirs is a priority.

Suggested Citation

  • Mohamed A. Farrag & Haitham M. Amer & Rauf Bhat & Maaweya E. Hamed & Ibrahim M. Aziz & Ayman Mubarak & Turki M Dawoud & Sami G Almalki & Fayez Alghofaili & Ahmad K. Alnemare & Raid Saleem Al-Baradi & , 2021. "SARS-CoV-2: An Overview of Virus Genetics, Transmission, and Immunopathogenesis," IJERPH, MDPI, vol. 18(12), pages 1-14, June.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:12:p:6312-:d:572931
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/12/6312/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/12/6312/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. V. Stalin Raj & Huihui Mou & Saskia L. Smits & Dick H. W. Dekkers & Marcel A. Müller & Ronald Dijkman & Doreen Muth & Jeroen A. A. Demmers & Ali Zaki & Ron A. M. Fouchier & Volker Thiel & Christian Dr, 2013. "Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC," Nature, Nature, vol. 495(7440), pages 251-254, March.
    2. Luca Fiorillo & Gabriele Cervino & Marco Matarese & Cesare D’Amico & Giovanni Surace & Valeria Paduano & Maria Teresa Fiorillo & Antonio Moschella & Alessia La Bruna & Giovanni Luca Romano & Riccardo , 2020. "COVID-19 Surface Persistence: A Recent Data Summary and Its Importance for Medical and Dental Settings," IJERPH, MDPI, vol. 17(9), pages 1-10, April.
    3. Jian Shang & Gang Ye & Ke Shi & Yushun Wan & Chuming Luo & Hideki Aihara & Qibin Geng & Ashley Auerbach & Fang Li, 2020. "Structural basis of receptor recognition by SARS-CoV-2," Nature, Nature, vol. 581(7807), pages 221-224, May.
    4. Wenhui Li & Michael J. Moore & Natalya Vasilieva & Jianhua Sui & Swee Kee Wong & Michael A. Berne & Mohan Somasundaran & John L. Sullivan & Katherine Luzuriaga & Thomas C. Greenough & Hyeryun Choe & M, 2003. "Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus," Nature, Nature, vol. 426(6965), pages 450-454, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alvaro Francisco Lopes de Sousa & Shirley Verônica Melo Almeida Lima & João Victor Rocha & Herica Emilia Félix de Carvalho & Artur Acelino Francisco Luz Nunes Queiroz & Guilherme Schneider & Layze Bra, 2021. "Sexual Exposure to HIV Infection during the COVID-19 Pandemic in Men Who Have Sex with Men (MSM): A Multicentric Study," IJERPH, MDPI, vol. 18(18), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milad Haghani & Pegah Varamini, 2021. "Temporal evolution, most influential studies and sleeping beauties of the coronavirus literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 7005-7050, August.
    2. Weiwei Ji & Qi Peng & Xueqiong Fang & Zehou Li & Yaxin Li & Cunfa Xu & Shuqing Zhao & Jizong Li & Rong Chen & Guoxiang Mo & Zhanyong Wei & Ying Xu & Bin Li & Shuijun Zhang, 2022. "Structures of a deltacoronavirus spike protein bound to porcine and human receptors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Shubhadeep Roychoudhury & Anandan Das & Pallav Sengupta & Sulagna Dutta & Shatabhisha Roychoudhury & Arun Paul Choudhury & A. B. Fuzayel Ahmed & Saumendra Bhattacharjee & Petr Slama, 2020. "Viral Pandemics of the Last Four Decades: Pathophysiology, Health Impacts and Perspectives," IJERPH, MDPI, vol. 17(24), pages 1-39, December.
    4. Hossein Hozhabri & Francesca Piceci Sparascio & Hamidreza Sohrabi & Leila Mousavifar & René Roy & Daniela Scribano & Alessandro De Luca & Cecilia Ambrosi & Meysam Sarshar, 2020. "The Global Emergency of Novel Coronavirus (SARS-CoV-2): An Update of the Current Status and Forecasting," IJERPH, MDPI, vol. 17(16), pages 1-35, August.
    5. Fabian Zech & Daniel Schniertshauer & Christoph Jung & Alexandra Herrmann & Arne Cordsmeier & Qinya Xie & Rayhane Nchioua & Caterina Prelli Bozzo & Meta Volcic & Lennart Koepke & Janis A. Müller & Jan, 2021. "Spike residue 403 affects binding of coronavirus spikes to human ACE2," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    6. Shouheng Jin & Xing He & Ling Ma & Zhen Zhuang & Yiliang Wang & Meng Lin & Sihui Cai & Lu Wei & Zheyu Wang & Zhiyao Zhao & Yaoxing Wu & Lin Sun & Chunwei Li & Weihong Xie & Yong Zhao & Zhou Songyang &, 2022. "Suppression of ACE2 SUMOylation protects against SARS-CoV-2 infection through TOLLIP-mediated selective autophagy," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    7. David Chmielewski & Eric A. Wilson & Grigore Pintilie & Peng Zhao & Muyuan Chen & Michael F. Schmid & Graham Simmons & Lance Wells & Jing Jin & Abhishek Singharoy & Wah Chiu, 2023. "Structural insights into the modulation of coronavirus spike tilting and infectivity by hinge glycans," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Tomokazu Yamaguchi & Midori Hoshizaki & Takafumi Minato & Satoru Nirasawa & Masamitsu N. Asaka & Mayumi Niiyama & Masaki Imai & Akihiko Uda & Jasper Fuk-Woo Chan & Saori Takahashi & Jianbo An & Akari , 2021. "ACE2-like carboxypeptidase B38-CAP protects from SARS-CoV-2-induced lung injury," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    9. Chunyan Wang & Emma L. Hesketh & Tatiana M. Shamorkina & Wentao Li & Peter J. Franken & Dubravka Drabek & Rien Haperen & Sarah Townend & Frank J. M. Kuppeveld & Frank Grosveld & Neil A. Ranson & Joost, 2022. "Antigenic structure of the human coronavirus OC43 spike reveals exposed and occluded neutralizing epitopes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Behrooz Darbani, 2020. "The Expression and Polymorphism of Entry Machinery for COVID-19 in Human: Juxtaposing Population Groups, Gender, and Different Tissues," IJERPH, MDPI, vol. 17(10), pages 1-8, May.
    11. Byung Uk Lee, 2021. "Why Does the SARS-CoV-2 Delta VOC Spread So Rapidly? Universal Conditions for the Rapid Spread of Respiratory Viruses, Minimum Viral Loads for Viral Aerosol Generation, Effects of Vaccination on Viral," IJERPH, MDPI, vol. 18(18), pages 1-6, September.
    12. Shanlin Ke & Scott T. Weiss & Yang-Yu Liu, 2022. "Dissecting the role of the human microbiome in COVID-19 via metagenome-assembled genomes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. David Gomez-Zepeda & Danielle Arnold-Schild & Julian Beyrle & Arthur Declercq & Ralf Gabriels & Elena Kumm & Annica Preikschat & Mateusz Krzysztof Łącki & Aurélie Hirschler & Jeewan Babu Rijal & Chris, 2024. "Thunder-DDA-PASEF enables high-coverage immunopeptidomics and is boosted by MS2Rescore with MS2PIP timsTOF fragmentation prediction model," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    14. Gabriele Cervino & Luca Fiorillo & Giovanni Surace & Valeria Paduano & Maria Teresa Fiorillo & Rosa De Stefano & Riccardo Laudicella & Sergio Baldari & Michele Gaeta & Marco Cicciù, 2020. "SARS-CoV-2 Persistence: Data Summary up to Q2 2020," Data, MDPI, vol. 5(3), pages 1-16, September.
    15. Indrikis A. Krams & Priit Jõers & Severi Luoto & Giedrius Trakimas & Vilnis Lietuvietis & Ronalds Krams & Irena Kaminska & Markus J. Rantala & Tatjana Krama, 2021. "The Obesity Paradox Predicts the Second Wave of COVID-19 to Be Severe in Western Countries," IJERPH, MDPI, vol. 18(3), pages 1-10, January.
    16. Roberto A. Sussman & Eliana Golberstein & Riccardo Polosa, 2021. "Aerial Transmission of the SARS-CoV-2 Virus through Environmental E-Cigarette Aerosols: Implications for Public Policies," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    17. Ellen Boyd & Michelle Coombe & Natalie Prystajecky & Jessica M. Caleta & Inna Sekirov & John Tyson & Chelsea Himsworth, 2023. "Hands off the Mink! Using Environmental Sampling for SARS-CoV-2 Surveillance in American Mink," IJERPH, MDPI, vol. 20(2), pages 1-11, January.
    18. Anna R. Mäkelä & Hasan Uğurlu & Liina Hannula & Ravi Kant & Petja Salminen & Riku Fagerlund & Sanna Mäki & Anu Haveri & Tomas Strandin & Lauri Kareinen & Jussi Hepojoki & Suvi Kuivanen & Lev Levanov &, 2023. "Intranasal trimeric sherpabody inhibits SARS-CoV-2 including recent immunoevasive Omicron subvariants," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Oskar Staufer & Kapil Gupta & Jochen Estebano Hernandez Bücher & Fabian Kohler & Christian Sigl & Gunjita Singh & Kate Vasileiou & Ana Yagüe Relimpio & Meline Macher & Sebastian Fabritz & Hendrik Diet, 2022. "Synthetic virions reveal fatty acid-coupled adaptive immunogenicity of SARS-CoV-2 spike glycoprotein," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Maria Eleonora Bizzoca & Giuseppina Campisi & Lorenzo Lo Muzio, 2020. "Covid-19 Pandemic: What Changes for Dentists and Oral Medicine Experts? A Narrative Review and Novel Approaches to Infection Containment," IJERPH, MDPI, vol. 17(11), pages 1-30, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:12:p:6312-:d:572931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.