IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27097-8.html
   My bibliography  Save this article

ACE2-like carboxypeptidase B38-CAP protects from SARS-CoV-2-induced lung injury

Author

Listed:
  • Tomokazu Yamaguchi

    (Akita University Graduate School of Medicine)

  • Midori Hoshizaki

    (Akita University Graduate School of Medicine
    National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN))

  • Takafumi Minato

    (Akita University Graduate School of Medicine)

  • Satoru Nirasawa

    (Japan International Research Center for Agricultural Sciences)

  • Masamitsu N. Asaka

    (Tsukuba Primate Research Center, NIBIOHN)

  • Mayumi Niiyama

    (Laboratory of Biopharmaceutical Research, NIBIOHN)

  • Masaki Imai

    (University of Tokyo)

  • Akihiko Uda

    (National Institute of Infectious Diseases)

  • Jasper Fuk-Woo Chan

    (The University of Hong Kong)

  • Saori Takahashi

    (Akita Research Institute of Food and Brewing)

  • Jianbo An

    (Akita University Graduate School of Medicine)

  • Akari Saku

    (Akita University Graduate School of Medicine)

  • Ryota Nukiwa

    (National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN)
    Osaka University Graduate School of Medicine)

  • Daichi Utsumi

    (Tsukuba Primate Research Center, NIBIOHN)

  • Maki Kiso

    (University of Tokyo)

  • Atsuhiro Yasuhara

    (University of Tokyo)

  • Vincent Kwok-Man Poon

    (The University of Hong Kong)

  • Chris Chung-Sing Chan

    (The University of Hong Kong)

  • Yuji Fujino

    (Osaka University Graduate School of Medicine)

  • Satoru Motoyama

    (Akita University Graduate School of Medicine)

  • Satoshi Nagata

    (Laboratory of Antibody Design, NIBIOHN)

  • Josef M. Penninger

    (University of British Columbia
    IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences)

  • Haruhiko Kamada

    (Laboratory of Biopharmaceutical Research, NIBIOHN)

  • Kwok-Yung Yuen

    (The University of Hong Kong)

  • Wataru Kamitani

    (Gunma University)

  • Ken Maeda

    (National Institute of Infectious Diseases)

  • Yoshihiro Kawaoka

    (University of Tokyo)

  • Yasuhiro Yasutomi

    (Tsukuba Primate Research Center, NIBIOHN)

  • Yumiko Imai

    (National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN))

  • Keiji Kuba

    (Akita University Graduate School of Medicine)

Abstract

Angiotensin-converting enzyme 2 (ACE2) is a receptor for cell entry of SARS-CoV-2, and recombinant soluble ACE2 protein inhibits SARS-CoV-2 infection as a decoy. ACE2 is a carboxypeptidase that degrades angiotensin II, thereby improving the pathologies of cardiovascular disease or acute lung injury. Here we show that B38-CAP, an ACE2-like enzyme, is protective against SARS-CoV-2-induced lung injury. Endogenous ACE2 expression is downregulated in the lungs of SARS-CoV-2-infected hamsters, leading to elevation of angiotensin II levels. Recombinant Spike also downregulates ACE2 expression and worsens the symptoms of acid-induced lung injury. B38-CAP does not neutralize cell entry of SARS-CoV-2. However, B38-CAP treatment improves the pathologies of Spike-augmented acid-induced lung injury. In SARS-CoV-2-infected hamsters or human ACE2 transgenic mice, B38-CAP significantly improves lung edema and pathologies of lung injury. These results provide the first in vivo evidence that increasing ACE2-like enzymatic activity is a potential therapeutic strategy to alleviate lung pathologies in COVID-19 patients.

Suggested Citation

  • Tomokazu Yamaguchi & Midori Hoshizaki & Takafumi Minato & Satoru Nirasawa & Masamitsu N. Asaka & Mayumi Niiyama & Masaki Imai & Akihiko Uda & Jasper Fuk-Woo Chan & Saori Takahashi & Jianbo An & Akari , 2021. "ACE2-like carboxypeptidase B38-CAP protects from SARS-CoV-2-induced lung injury," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27097-8
    DOI: 10.1038/s41467-021-27097-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27097-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27097-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peng Zhou & Xing-Lou Yang & Xian-Guang Wang & Ben Hu & Lei Zhang & Wei Zhang & Hao-Rui Si & Yan Zhu & Bei Li & Chao-Lin Huang & Hui-Dong Chen & Jing Chen & Yun Luo & Hua Guo & Ren-Di Jiang & Mei-Qin L, 2020. "Addendum: A pneumonia outbreak associated with a new coronavirus of probable bat origin," Nature, Nature, vol. 588(7836), pages 6-6, December.
    2. Peng Zhou & Xing-Lou Yang & Xian-Guang Wang & Ben Hu & Lei Zhang & Wei Zhang & Hao-Rui Si & Yan Zhu & Bei Li & Chao-Lin Huang & Hui-Dong Chen & Jing Chen & Yun Luo & Hua Guo & Ren-Di Jiang & Mei-Qin L, 2020. "A pneumonia outbreak associated with a new coronavirus of probable bat origin," Nature, Nature, vol. 579(7798), pages 270-273, March.
    3. Yumiko Imai & Keiji Kuba & Shuan Rao & Yi Huan & Feng Guo & Bin Guan & Peng Yang & Renu Sarao & Teiji Wada & Howard Leong-Poi & Michael A. Crackower & Akiyoshi Fukamizu & Chi-Chung Hui & Lutz Hein & S, 2005. "Angiotensin-converting enzyme 2 protects from severe acute lung failure," Nature, Nature, vol. 436(7047), pages 112-116, July.
    4. Michael A. Crackower & Renu Sarao & Gavin Y. Oudit & Chana Yagil & Ivona Kozieradzki & Sam E. Scanga & Antonio J. Oliveira-dos-Santos & Joan da Costa & Liyong Zhang & York Pei & James Scholey & Carlos, 2002. "Angiotensin-converting enzyme 2 is an essential regulator of heart function," Nature, Nature, vol. 417(6891), pages 822-828, June.
    5. Jian Shang & Gang Ye & Ke Shi & Yushun Wan & Chuming Luo & Hideki Aihara & Qibin Geng & Ashley Auerbach & Fang Li, 2020. "Structural basis of receptor recognition by SARS-CoV-2," Nature, Nature, vol. 581(7807), pages 221-224, May.
    6. Robbert Boudewijns & Hendrik Jan Thibaut & Suzanne J. F. Kaptein & Rong Li & Valentijn Vergote & Laura Seldeslachts & Johan Weyenbergh & Carolien Keyzer & Lindsey Bervoets & Sapna Sharma & Laurens Lie, 2020. "STAT2 signaling restricts viral dissemination but drives severe pneumonia in SARS-CoV-2 infected hamsters," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    7. Zhen Zou & Yiwu Yan & Yuelong Shu & Rongbao Gao & Yang Sun & Xiao Li & Xiangwu Ju & Zhu Liang & Qiang Liu & Yan Zhao & Feng Guo & Tian Bai & Zongsheng Han & Jindong Zhu & Huandi Zhou & Fengming Huang , 2014. "Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections," Nature Communications, Nature, vol. 5(1), pages 1-7, May.
    8. Wenhui Li & Michael J. Moore & Natalya Vasilieva & Jianhua Sui & Swee Kee Wong & Michael A. Berne & Mohan Somasundaran & John L. Sullivan & Katherine Luzuriaga & Thomas C. Greenough & Hyeryun Choe & M, 2003. "Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus," Nature, Nature, vol. 426(6965), pages 450-454, November.
    9. Takafumi Minato & Satoru Nirasawa & Teruki Sato & Tomokazu Yamaguchi & Midori Hoshizaki & Tadakatsu Inagaki & Kazuhiko Nakahara & Tadashi Yoshihashi & Ryo Ozawa & Saki Yokota & Miyuki Natsui & Souichi, 2020. "B38-CAP is a bacteria-derived ACE2-like enzyme that suppresses hypertension and cardiac dysfunction," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    10. Linlin Bao & Wei Deng & Baoying Huang & Hong Gao & Jiangning Liu & Lili Ren & Qiang Wei & Pin Yu & Yanfeng Xu & Feifei Qi & Yajin Qu & Fengdi Li & Qi Lv & Wenling Wang & Jing Xue & Shuran Gong & Mingy, 2020. "The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice," Nature, Nature, vol. 583(7818), pages 830-833, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Milad Haghani & Pegah Varamini, 2021. "Temporal evolution, most influential studies and sleeping beauties of the coronavirus literature," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 7005-7050, August.
    2. Fabian Zech & Daniel Schniertshauer & Christoph Jung & Alexandra Herrmann & Arne Cordsmeier & Qinya Xie & Rayhane Nchioua & Caterina Prelli Bozzo & Meta Volcic & Lennart Koepke & Janis A. Müller & Jan, 2021. "Spike residue 403 affects binding of coronavirus spikes to human ACE2," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Diego Fernández-Lázaro & Jerónimo J. González-Bernal & Nerea Sánchez-Serrano & Lourdes Jiménez Navascués & Ana Ascaso-del-Río & Juan Mielgo-Ayuso, 2020. "Physical Exercise as a Multimodal Tool for COVID-19: Could It Be Used as a Preventive Strategy?," IJERPH, MDPI, vol. 17(22), pages 1-13, November.
    4. Peter Radvak & Hyung-Joon Kwon & Martina Kosikova & Uriel Ortega-Rodriguez & Ruoxuan Xiang & Je-Nie Phue & Rong-Fong Shen & James Rozzelle & Neeraj Kapoor & Taylor Rabara & Jeff Fairman & Hang Xie, 2021. "SARS-CoV-2 B.1.1.7 (alpha) and B.1.351 (beta) variants induce pathogenic patterns in K18-hACE2 transgenic mice distinct from early strains," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    5. Xiaoming Hu & Shuang Wang & Shaotong Fu & Meng Qin & Chengliang Lyu & Zhaowen Ding & Yan Wang & Yishu Wang & Dongshu Wang & Li Zhu & Tao Jiang & Jing Sun & Hui Ding & Jie Wu & Lingqian Chang & Yimin C, 2023. "Intranasal mask for protecting the respiratory tract against viral aerosols," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    6. Davida S. Smyth & Monica Trujillo & Devon A. Gregory & Kristen Cheung & Anna Gao & Maddie Graham & Yue Guan & Caitlyn Guldenpfennig & Irene Hoxie & Sherin Kannoly & Nanami Kubota & Terri D. Lyddon & M, 2022. "Tracking cryptic SARS-CoV-2 lineages detected in NYC wastewater," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Ma’ayan Israeli & Yaara Finkel & Yfat Yahalom-Ronen & Nir Paran & Theodor Chitlaru & Ofir Israeli & Inbar Cohen-Gihon & Moshe Aftalion & Reut Falach & Shahar Rotem & Uri Elia & Ital Nemet & Limor Klik, 2022. "Genome-wide CRISPR screens identify GATA6 as a proviral host factor for SARS-CoV-2 via modulation of ACE2," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    8. Zepeng Xu & Xinrui Kang & Pu Han & Pei Du & Linjie Li & Anqi Zheng & Chuxia Deng & Jianxun Qi & Xin Zhao & Qihui Wang & Kefang Liu & George Fu Gao, 2022. "Binding and structural basis of equine ACE2 to RBDs from SARS-CoV, SARS-CoV-2 and related coronaviruses," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Hari Vishal Lakhani & Sneha S. Pillai & Mishghan Zehra & Ishita Sharma & Komal Sodhi, 2020. "Systematic Review of Clinical Insights into Novel Coronavirus (CoVID-19) Pandemic: Persisting Challenges in U.S. Rural Population," IJERPH, MDPI, vol. 17(12), pages 1-14, June.
    10. Dongsheng Chen & Jian Sun & Jiacheng Zhu & Xiangning Ding & Tianming Lan & Xiran Wang & Weiying Wu & Zhihua Ou & Linnan Zhu & Peiwen Ding & Haoyu Wang & Lihua Luo & Rong Xiang & Xiaoling Wang & Jiayin, 2021. "Single cell atlas for 11 non-model mammals, reptiles and birds," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    11. Hossein Hozhabri & Francesca Piceci Sparascio & Hamidreza Sohrabi & Leila Mousavifar & René Roy & Daniela Scribano & Alessandro De Luca & Cecilia Ambrosi & Meysam Sarshar, 2020. "The Global Emergency of Novel Coronavirus (SARS-CoV-2): An Update of the Current Status and Forecasting," IJERPH, MDPI, vol. 17(16), pages 1-35, August.
    12. Maximilian A. Funk & Judith Leitner & Marlene C. Gerner & Jasmin M. Hammerler & Benjamin Salzer & Manfred Lehner & Claire Battin & Simon Gumpelmair & Karin Stiasny & Katharina Grabmeier-Pfistershammer, 2023. "Interrogating ligand-receptor interactions using highly sensitive cellular biosensors," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Shufeng Liu & Charles B. Stauft & Prabhuanand Selvaraj & Prabha Chandrasekaran & Felice D’Agnillo & Chao-Kai Chou & Wells W. Wu & Christopher Z. Lien & Clement A. Meseda & Cyntia L. Pedro & Matthew F., 2022. "Intranasal delivery of a rationally attenuated SARS-CoV-2 is immunogenic and protective in Syrian hamsters," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    14. Gang Ye & Bin Liu & Fang Li, 2022. "Cryo-EM structure of a SARS-CoV-2 omicron spike protein ectodomain," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    15. Graziella Orrù & Ciro Conversano & Eleonora Malloggi & Francesca Francesconi & Rebecca Ciacchini & Angelo Gemignani, 2020. "Neurological Complications of COVID-19 and Possible Neuroinvasion Pathways: A Systematic Review," IJERPH, MDPI, vol. 17(18), pages 1-18, September.
    16. Britton Boras & Rhys M. Jones & Brandon J. Anson & Dan Arenson & Lisa Aschenbrenner & Malina A. Bakowski & Nathan Beutler & Joseph Binder & Emily Chen & Heather Eng & Holly Hammond & Jennifer Hammond , 2021. "Preclinical characterization of an intravenous coronavirus 3CL protease inhibitor for the potential treatment of COVID19," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    17. Yongzhu Xiong & Yunpeng Wang & Feng Chen & Mingyong Zhu, 2020. "Spatial Statistics and Influencing Factors of the COVID-19 Epidemic at Both Prefecture and County Levels in Hubei Province, China," IJERPH, MDPI, vol. 17(11), pages 1-26, May.
    18. Eugene Song & Jae-Eun Lee & Seola Kwon, 2021. "Effect of Public Empathy with Infection-Control Guidelines on Infection-Prevention Attitudes and Behaviors: Based on the Case of COVID-19," IJERPH, MDPI, vol. 18(24), pages 1-18, December.
    19. Jaeyong Lee & Calem Kenward & Liam J. Worrall & Marija Vuckovic & Francesco Gentile & Anh-Tien Ton & Myles Ng & Artem Cherkasov & Natalie C. J. Strynadka & Mark Paetzel, 2022. "X-ray crystallographic characterization of the SARS-CoV-2 main protease polyprotein cleavage sites essential for viral processing and maturation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Xu, Baochang & Li, Sihui & Afzal, Ayesha & Mirza, Nawazish & Zhang, Meng, 2022. "The impact of financial development on environmental sustainability: A European perspective," Resources Policy, Elsevier, vol. 78(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27097-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.