IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i12p4424-d373907.html
   My bibliography  Save this article

Current Applications, Opportunities, and Limitations of AI for 3D Imaging in Dental Research and Practice

Author

Listed:
  • Kuofeng Hung

    (Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China)

  • Andy Wai Kan Yeung

    (Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China)

  • Ray Tanaka

    (Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China)

  • Michael M. Bornstein

    (Oral and Maxillofacial Radiology, Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong 999077, China
    Department of Oral Health & Medicine, University Center for Dental Medicine Basel UZB, University of Basel, 4058 Basel, Switzerland)

Abstract

The increasing use of three-dimensional (3D) imaging techniques in dental medicine has boosted the development and use of artificial intelligence (AI) systems for various clinical problems. Cone beam computed tomography (CBCT) and intraoral/facial scans are potential sources of image data to develop 3D image-based AI systems for automated diagnosis, treatment planning, and prediction of treatment outcome. This review focuses on current developments and performance of AI for 3D imaging in dentomaxillofacial radiology (DMFR) as well as intraoral and facial scanning. In DMFR, machine learning-based algorithms proposed in the literature focus on three main applications, including automated diagnosis of dental and maxillofacial diseases, localization of anatomical landmarks for orthodontic and orthognathic treatment planning, and general improvement of image quality. Automatic recognition of teeth and diagnosis of facial deformations using AI systems based on intraoral and facial scanning will very likely be a field of increased interest in the future. The review is aimed at providing dental practitioners and interested colleagues in healthcare with a comprehensive understanding of the current trend of AI developments in the field of 3D imaging in dental medicine.

Suggested Citation

  • Kuofeng Hung & Andy Wai Kan Yeung & Ray Tanaka & Michael M. Bornstein, 2020. "Current Applications, Opportunities, and Limitations of AI for 3D Imaging in Dental Research and Practice," IJERPH, MDPI, vol. 17(12), pages 1-18, June.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:12:p:4424-:d:373907
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/12/4424/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/12/4424/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Correction: Corrigendum: Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 546(7660), pages 686-686, June.
    2. Gandomi, Amir & Haider, Murtaza, 2015. "Beyond the hype: Big data concepts, methods, and analytics," International Journal of Information Management, Elsevier, vol. 35(2), pages 137-144.
    3. Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 542(7639), pages 115-118, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andy Wai Kan Yeung, 2022. "Radiolucent Lesions of the Jaws: An Attempted Demonstration of the Use of Co-Word Analysis to List Main Similar Pathologies," IJERPH, MDPI, vol. 19(4), pages 1-11, February.
    2. Julien Issa & Raphael Olszewski & Marta Dyszkiewicz-Konwińska, 2022. "The Effectiveness of Semi-Automated and Fully Automatic Segmentation for Inferior Alveolar Canal Localization on CBCT Scans: A Systematic Review," IJERPH, MDPI, vol. 19(1), pages 1-10, January.
    3. Francesca De Angelis & Nicola Pranno & Alessio Franchina & Stefano Di Carlo & Edoardo Brauner & Agnese Ferri & Gerardo Pellegrino & Emma Grecchi & Funda Goker & Luigi Vito Stefanelli, 2022. "Artificial Intelligence: A New Diagnostic Software in Dentistry: A Preliminary Performance Diagnostic Study," IJERPH, MDPI, vol. 19(3), pages 1-10, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taneja, Anu & Arora, Anuja, 2019. "Modeling user preferences using neural networks and tensor factorization model," International Journal of Information Management, Elsevier, vol. 45(C), pages 132-148.
    2. Majd Oteibi & Adam Tamimi & Kaneez Abbas & Gabriel Tamimi & Danesh Khazaei & Hadi Khazaei, 2024. "Advancing Digital Health using AI and Machine Learning Solutions for Early Ultrasonic Detection of Breast Disorders in Women," International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(11), pages 518-527, November.
    3. Lin Lu & Laurent Dercle & Binsheng Zhao & Lawrence H. Schwartz, 2021. "Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
    5. Freddy Gabbay & Rotem Lev Aharoni & Ori Schweitzer, 2022. "Deep Neural Network Memory Performance and Throughput Modeling and Simulation Framework," Mathematics, MDPI, vol. 10(21), pages 1-20, November.
    6. Sonika Darshan, 2024. "Data Mining for Disease Diagnosis: A Review of Machine Learning Approaches in Healthcare," Journal of Artificial Intelligence General science (JAIGS) ISSN:3006-4023, Open Knowledge, vol. 6(1), pages 716-726.
    7. Gang Yu & Kai Sun & Chao Xu & Xing-Hua Shi & Chong Wu & Ting Xie & Run-Qi Meng & Xiang-He Meng & Kuan-Song Wang & Hong-Mei Xiao & Hong-Wen Deng, 2021. "Accurate recognition of colorectal cancer with semi-supervised deep learning on pathological images," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    8. DonHee Lee & Seong No Yoon, 2021. "Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges," IJERPH, MDPI, vol. 18(1), pages 1-18, January.
    9. Shang Li & Fei Yu & Shankou Zhang & Huige Yin & Hairong Lin, 2025. "Optimization of Direct Convolution Algorithms on ARM Processors for Deep Learning Inference," Mathematics, MDPI, vol. 13(5), pages 1-19, February.
    10. Dario Sipari & Betsy D. M. Chaparro-Rico & Daniele Cafolla, 2022. "SANE (Easy Gait Analysis System): Towards an AI-Assisted Automatic Gait-Analysis," IJERPH, MDPI, vol. 19(16), pages 1-27, August.
    11. Darko B. Vuković & Senanu Dekpo-Adza & Stefana Matović, 2025. "AI integration in financial services: a systematic review of trends and regulatory challenges," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-29, December.
    12. Walter Leal Filho & João Henrique Paulino Pires Eustachio & Andreea Corina Nita (Danila) & Maria Alzira Pimenta Dinis & Amanda Lange Salvia & Debby R. E. Cotton & Kamila Frizzo & Laís Viera Trevisan &, 2024. "Using data science for sustainable development in higher education," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(1), pages 15-28, February.
    13. Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.
    14. Oded Rotem & Tamar Schwartz & Ron Maor & Yishay Tauber & Maya Tsarfati Shapiro & Marcos Meseguer & Daniella Gilboa & Daniel S. Seidman & Assaf Zaritsky, 2024. "Visual interpretability of image-based classification models by generative latent space disentanglement applied to in vitro fertilization," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    15. Hanning Ying & Xiaoqing Liu & Min Zhang & Yiyue Ren & Shihui Zhen & Xiaojie Wang & Bo Liu & Peng Hu & Lian Duan & Mingzhi Cai & Ming Jiang & Xiangdong Cheng & Xiangyang Gong & Haitao Jiang & Jianshuai, 2024. "A multicenter clinical AI system study for detection and diagnosis of focal liver lesions," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Nao Aisu & Masahiro Miyake & Kohei Takeshita & Masato Akiyama & Ryo Kawasaki & Kenji Kashiwagi & Taiji Sakamoto & Tetsuro Oshika & Akitaka Tsujikawa, 2022. "Regulatory-approved deep learning/machine learning-based medical devices in Japan as of 2020: A systematic review," PLOS Digital Health, Public Library of Science, vol. 1(1), pages 1-12, January.
    17. Cristian Simionescu & Adrian Iftene, 2022. "Deep Learning Research Directions in Medical Imaging," Mathematics, MDPI, vol. 10(23), pages 1-25, November.
    18. Aglika Kaneva, 2024. "Digitalisation in the Financial Sector," Innovative Information Technologies for Economy Digitalization (IITED), University of National and World Economy, Sofia, Bulgaria, issue 1, pages 264-274, October.
    19. Jingui Zhang & Chuangji Meng & Cunlu Xu & Jingyong Ma & Wei Su, 2022. "Deep Transfer Learning Method Based on Automatic Domain Alignment and Moment Matching," Mathematics, MDPI, vol. 10(14), pages 1-14, July.
    20. Yuming Jiang & Zhicheng Zhang & Wei Wang & Weicai Huang & Chuanli Chen & Sujuan Xi & M. Usman Ahmad & Yulan Ren & Shengtian Sang & Jingjing Xie & Jen-Yeu Wang & Wenjun Xiong & Tuanjie Li & Zhen Han & , 2023. "Biology-guided deep learning predicts prognosis and cancer immunotherapy response," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:12:p:4424-:d:373907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.