IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i14p2542-d248964.html
   My bibliography  Save this article

Hydrologic Modeling for Sustainable Water Resources Management in Urbanized Karst Areas

Author

Listed:
  • Hugo Henrique Cardoso de Salis

    (Departamento de Geografia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6.627 Pampulha, Belo Horizonte 31270-901, Minas Gerais, Brazil)

  • Adriana Monteiro da Costa

    (Departamento de Geografia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6.627 Pampulha, Belo Horizonte 31270-901, Minas Gerais, Brazil)

  • João Herbert Moreira Vianna

    (EMBRAPA Milho e Sorgo, Rodovia MG-424, Km 45 Caixa Postal: 285 ou 151, Sete Lagoas 35701-970, Minas Gerais, Brazil)

  • Marysol Azeneth Schuler

    (EMBRAPA Solos, Rua Jardim Botânico, nº 1.024, Bairro Jardim Botânico, Rio de Janeiro 22460-000, Brazil)

  • Annika Künne

    (Geographic Information Science Group, Institute of Geography, Friedrich Schiller University Jena, 07749 Jena, Germany)

  • Luís Filipe Sanches Fernandes

    (Centro de Investigação e Tecnologias Agroambientais e Biológicas, Universidade de Trás-os-Montes e Alto Douro, Ap 1013, 5001-801 Vila Real, Portugal)

  • Fernando António Leal Pacheco

    (Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Ap 1013, 5001-801 Vila Real, Portugal)

Abstract

The potential of karst aquifers as a drinking water resource is substantial because of their large storage capacity gained in the course of carbonate dissolution. Carbonate dissolution and consequent development of preferential paths are also the reasons for the complex behavior of these aquifers as regards surface and underground flow. Hydrological modeling is therefore of paramount importance for an adequate assessment of flow components in catchments shaped on karsts. The cross tabulation of such components with geology, soils, and land use data in Geographic Information Systems helps decision makers to set up sustainable groundwater abstractions and allocate areas for storage of quality surface water, in the context of conjunctive water resources management. In the present study, a hydrologic modeling using the JAMS J2000 software was conducted in a karst area of Jequitiba River basin located near the Sete Lagoas town in the state of Minas Gerais, Brazil. The results revealed a very high surface water component explained by urbanization of Sete Lagoas, which hampers the recharge of 7.9 hm 3 yr −1 of storm water. They also exposed a very large negative difference (−8.3 hm 3 yr −1 ) between groundwater availability (6.3 hm 3 yr −1 ) and current groundwater abstraction from the karst aquifer (14.6 hm 3 yr −1 ), which is in keeping with previously reported water table declines around drilled wells that can reach 48 m in old wells used for public water supply. Artificial recharge of excess surface flow is not recommended within the urban areas, given the high risk of groundwater contamination with metals and hydrocarbons potentially transported in storm water, as well as development of suffosional sinkholes as a consequence of concentrated storm flow. The surface component could however be stored in small dams in forested areas from the catchment headwaters and diverted to the urban area to complement the drinking water supply. The percolation in soil was estimated to be high in areas used for agriculture and pastures. The implementation of correct fertilizing, management, and irrigation practices are considered crucial to attenuate potential contamination of groundwater and suffosional sinkhole development in these areas.

Suggested Citation

  • Hugo Henrique Cardoso de Salis & Adriana Monteiro da Costa & João Herbert Moreira Vianna & Marysol Azeneth Schuler & Annika Künne & Luís Filipe Sanches Fernandes & Fernando António Leal Pacheco, 2019. "Hydrologic Modeling for Sustainable Water Resources Management in Urbanized Karst Areas," IJERPH, MDPI, vol. 16(14), pages 1-19, July.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:14:p:2542-:d:248964
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/14/2542/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/14/2542/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sara Soares & Daniela Terêncio & Luís Fernandes & João Machado & Fernando A.L. Pacheco, 2019. "The Potential of Small Dams for Conjunctive Water Management in Rural Municipalities," IJERPH, MDPI, vol. 16(7), pages 1-17, April.
    2. Álvarez, X. & Valero, E. & Santos, R.M.B. & Varandas, S.G.P. & Sanches Fernandes, L.F. & Pacheco, F.A.L., 2017. "Anthropogenic nutrients and eutrophication in multiple land use watersheds: Best management practices and policies for the protection of water resources," Land Use Policy, Elsevier, vol. 69(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang Zhang & Mingming Luo & Zhihua Chen, 2020. "Identification and Estimation of Solute Storage and Release in Karst Water Systems, South China," IJERPH, MDPI, vol. 17(19), pages 1-13, October.
    2. Kai Song & Guangxu Yang & Fei Wang & Jian Liu & Dan Liu, 2020. "Application of Geophysical and Hydrogeochemical Methods to the Protection of Drinking Groundwater in Karst Regions," IJERPH, MDPI, vol. 17(10), pages 1-22, May.
    3. Marianno de Olivera, Laís Caroline & de Mendonça, Gislaine Costa & Araújo Costa, Renata Cristina & Leite de Camargo, Regina Aparecida & Fernandes, Luís Filipe Sanches & Pacheco, Fernando António Leal , 2023. "Impacts of urban sprawl in the Administrative Region of Ribeirão Preto (Brazil) and measures to restore improved landscapes," Land Use Policy, Elsevier, vol. 124(C).
    4. Amit Kumar Basukala & Livia Rasche, 2022. "Model-Based Yield Gap Assessment in Nepal’s Diverse Agricultural Landscape," Land, MDPI, vol. 11(8), pages 1-25, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammed Ernur Akıner & İlknur Akıner, 2021. "Water Quality Analysis of Drinking Water Resource Lake Sapanca and Suggestions for the Solution of the Pollution Problem in the Context of Sustainable Environment Approach," Sustainability, MDPI, vol. 13(7), pages 1-13, April.
    2. Lukas Folkens & Daniel Bachmann & Petra Schneider, 2023. "Driving Forces and Socio-Economic Impacts of Low-Flow Events in Central Europe: A Literature Review Using DPSIR Criteria," Sustainability, MDPI, vol. 15(13), pages 1-24, July.
    3. Xiao Zhang & Xiaomin Chen & Wanshun Zhang & Hong Peng & Gaohong Xu & Yanxin Zhao & Zhenling Shen, 2022. "Impact of Land Use Changes on the Surface Runoff and Nutrient Load in the Three Gorges Reservoir Area, China," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    4. Cristina Gómez-Román & Luisa Lima & Sergio Vila-Tojo & Andrea Correa-Chica & Juan Lema & José-Manuel Sabucedo, 2020. "“Who Cares?”: The Acceptance of Decentralized Wastewater Systems in Regions without Water Problems," IJERPH, MDPI, vol. 17(23), pages 1-16, December.
    5. Puertes, Cristina & Bautista, Inmaculada & Lidón, Antonio & Francés, Félix, 2021. "Best management practices scenario analysis to reduce agricultural nitrogen loads and sediment yield to the semiarid Mar Menor coastal lagoon (Spain)," Agricultural Systems, Elsevier, vol. 188(C).
    6. Sorin Avram & Corina Cipu & Ana-Maria Corpade & Carmen Adriana Gheorghe & Nicolae Manta & Mihaita-Iulian Niculae & Ionuţ Silviu Pascu & Róbert Eugen Szép & Steliana Rodino, 2021. "GIS-Based Multi-Criteria Analysis Method for Assessment of Lake Ecosystems Degradation—Case Study in Romania," IJERPH, MDPI, vol. 18(11), pages 1-23, May.
    7. Sara Soares & Daniela Terêncio & Luís Fernandes & João Machado & Fernando A.L. Pacheco, 2019. "The Potential of Small Dams for Conjunctive Water Management in Rural Municipalities," IJERPH, MDPI, vol. 16(7), pages 1-17, April.
    8. Timothy P. Neher & Michelle L. Soupir & Rameshwar S. Kanwar, 2021. "Lake Atitlan: A Review of the Food, Energy, and Water Sustainability of a Mountain Lake in Guatemala," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
    9. Gabriel Medina & Catherine Isley & J. Arbuckle, 2021. "Promoting sustainable agriculture: Iowa stakeholders’ perspectives on the US Farm Bill conservation programs," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 173-194, January.
    10. Agnieszka Starzyk & Janusz Marchwiński & Eliza Maciejewska & Piotr Bujak & Kinga Rybak-Niedziółka & Magdalena Grochulska-Salak & Zdzisław Skutnik, 2023. "Resilience in Urban and Architectural Design—The Issue of Sustainable Development for Areas Associated with an Embankment," Sustainability, MDPI, vol. 15(11), pages 1-25, June.
    11. Adriana Monteiro da Costa & Hugo Henrique Cardoso de Salis & João Hebert Moreira Viana & Fernando António Leal Pacheco, 2019. "Groundwater Recharge Potential for Sustainable Water Use in Urban Areas of the Jequitiba River Basin, Brazil," Sustainability, MDPI, vol. 11(10), pages 1-20, May.
    12. Song, Malin & Xie, Qianjiao & Shahbaz, Muhammad & Yao, Xin, 2023. "Economic growth and security from the perspective of natural resource assets," Resources Policy, Elsevier, vol. 80(C).
    13. Hugo Henrique Cardoso de Salis & Adriana Monteiro da Costa & Annika Künne & Luís Filipe Sanches Fernandes & Fernando António Leal Pacheco, 2019. "Conjunctive Water Resources Management in Densely Urbanized Karst Areas: A Study in the Sete Lagoas Region, State of Minas Gerais, Brazil," Sustainability, MDPI, vol. 11(14), pages 1-21, July.
    14. Jie Xu & Zheng Zhou & Jie Chen & Haihua Zhuo & Jie Ma & Yunbing Liu, 2022. "Spatiotemporal Patterns in pCO 2 and Nutrient Concentration: Implications for the CO 2 Variations in a Eutrophic Lake," IJERPH, MDPI, vol. 19(19), pages 1-13, September.
    15. Manuel Viso-Vázquez & Carolina Acuña-Alonso & Juan Luis Rodríguez & Xana Álvarez, 2021. "Remote Detection of Cyanobacterial Blooms and Chlorophyll-a Analysis in a Eutrophic Reservoir Using Sentinel-2," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
    16. Regina Maria Bessa Santos & Luís Filipe Sanches Fernandes & Rui Manuel Vitor Cortes & Fernando António Leal Pacheco, 2019. "Development of a Hydrologic and Water Allocation Model to Assess Water Availability in the Sabor River Basin (Portugal)," IJERPH, MDPI, vol. 16(13), pages 1-25, July.
    17. Li, Xiaolin & Janssen, Annette B.G. & Strokal, Maryna & Kroeze, Carolien & Ma, Lin & Zhang, Yi & Zheng, Yi, 2023. "Assessing nitrogen sources in Lake Erhai: A spatially explicit modelling approach," Agricultural Water Management, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:14:p:2542-:d:248964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.