IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i2p273-d130293.html
   My bibliography  Save this article

Evaluating the Hydrologic Performance of Low Impact Development Scenarios in a Micro Urban Catchment

Author

Listed:
  • Chunlin Li

    (CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China)

  • Miao Liu

    (CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China)

  • Yuanman Hu

    (CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China)

  • Rongqing Han

    (School of Geography and Environment, Shandong Normal University, Jinan 250358, China)

  • Tuo Shi

    (CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Xiuqi Qu

    (CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yilin Wu

    (School of Geography and Environment, Shandong Normal University, Jinan 250358, China)

Abstract

As urbanization progresses, increasingly impervious surfaces have changed the hydrological processes in cities and resulted in a major challenge for urban stormwater control. This study uses the urban stormwater model to evaluate the performance and costs of low impact development (LID) scenarios in a micro urban catchment. Rainfall-runoff data of three rainfall events were used for model calibration and validation. The pre-developed (PreDev) scenario, post-developed (PostDev) scenario, and three LID scenarios were used to evaluate the hydrologic performance of LID measures. Using reduction in annual runoff as the goal, the best solutions for each LID scenario were selected using cost-effectiveness curves. The simulation results indicated that the three designed LID scenarios could effectively reduce annual runoff volumes and pollutant loads compared with the PostDev scenario. The most effective scenario (MaxPerf) reduced annual runoff by 53.4%, followed by the sponge city (SpoPerf, 51.5%) and economy scenarios (EcoPerf, 43.1%). The runoff control efficiency of the MaxPerf and SpoPerf scenarios increased by 23.9% and 19.5%, respectively, when compared with the EcoPerf scenario; however, the costs increased by 104% and 83.6%. The reduction rates of four pollutants (TSS, TN, TP, and COD) under the MaxPerf scenario were 59.8–61.1%, followed by SpoPerf (53.9–58.3%) and EcoPerf (42.3–45.4%), and the costs of the three scenarios were 3.74, 3.47 and 1.83 million yuan, respectively. These results can provide guidance to urban stormwater managers in future urban planning to improve urban water security.

Suggested Citation

  • Chunlin Li & Miao Liu & Yuanman Hu & Rongqing Han & Tuo Shi & Xiuqi Qu & Yilin Wu, 2018. "Evaluating the Hydrologic Performance of Low Impact Development Scenarios in a Micro Urban Catchment," IJERPH, MDPI, vol. 15(2), pages 1-14, February.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:2:p:273-:d:130293
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/2/273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/2/273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mao, Xuhui & Jia, Haifeng & Yu, Shaw L., 2017. "Assessing the ecological benefits of aggregate LID-BMPs through modelling," Ecological Modelling, Elsevier, vol. 353(C), pages 139-149.
    2. Xingqi Zhang & Xinya Guo & Maochuan Hu, 2016. "Hydrological effect of typical low impact development approaches in a residential district," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 389-400, January.
    3. Gao, Jie & Wang, Rusong & Huang, Jinlou & Liu, Min, 2015. "Application of BMP to urban runoff control using SUSTAIN model: Case study in an industrial area," Ecological Modelling, Elsevier, vol. 318(C), pages 177-183.
    4. Lei Yao & Liding Chen & Wei Wei, 2017. "Exploring the Linkage between Urban Flood Risk and Spatial Patterns in Small Urbanized Catchments of Beijing, China," IJERPH, MDPI, vol. 14(3), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyu Dong & Peng Yuan & Yonghui Song & Wenxuan Yi, 2021. "Optimizing Green-Gray Infrastructure for Non-Point Source Pollution Control under Future Uncertainties," IJERPH, MDPI, vol. 18(14), pages 1-16, July.
    2. Shi Qiu & Haiwei Yin & Jinling Deng & Muhan Li, 2020. "Cost-Effectiveness Analysis of Green–Gray Stormwater Control Measures for Non-Point Source Pollution," IJERPH, MDPI, vol. 17(3), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huafei Yu & Yaolong Zhao & Yingchun Fu, 2019. "Optimization of Impervious Surface Space Layout for Prevention of Urban Rainstorm Waterlogging: A Case Study of Guangzhou, China," IJERPH, MDPI, vol. 16(19), pages 1-28, September.
    2. Shi Qiu & Haiwei Yin & Jinling Deng & Muhan Li, 2020. "Cost-Effectiveness Analysis of Green–Gray Stormwater Control Measures for Non-Point Source Pollution," IJERPH, MDPI, vol. 17(3), pages 1-13, February.
    3. Xu-Wei Wang & Ye-Shuang Xu, 2022. "Investigation on the phenomena and influence factors of urban ground collapse in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 1-33, August.
    4. Luoyang Wang & Yao Li & Hao Hou & Yan Chen & Jinjin Fan & Pin Wang & Tangao Hu, 2022. "Analyzing spatial variance of urban waterlogging disaster at multiple scales based on a hydrological and hydrodynamic model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1915-1938, November.
    5. Arunima Sarkar Basu & Francesco Pilla & Srikanta Sannigrahi & Rémi Gengembre & Antoine Guilland & Bidroha Basu, 2021. "Theoretical Framework to Assess Green Roof Performance in Mitigating Urban Flooding as a Potential Nature-Based Solution," Sustainability, MDPI, vol. 13(23), pages 1-34, November.
    6. Ahmad, Shakeel & Jia, Haifeng & Chen, Zhengxia & Li, Qian & Xu, Changqing, 2020. "Water-energy nexus and energy efficiency: A systematic analysis of urban water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    7. Abdul Naser Majidi & Zoran Vojinovic & Alida Alves & Sutat Weesakul & Arlex Sanchez & Floris Boogaard & Jeroen Kluck, 2019. "Planning Nature-Based Solutions for Urban Flood Reduction and Thermal Comfort Enhancement," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
    8. Yongwei Gong & Yan Hao & Junqi Li & Haiyan Li & Zhenyao Shen & Wenhai Wang & Sisi Wang, 2019. "The Effects of Rainfall Runoff Pollutants on Plant Physiology in a Bioretention System Based on Pilot Experiments," Sustainability, MDPI, vol. 11(22), pages 1-16, November.
    9. Ireneusz Nowogoński, 2021. "Runoff Volume Reduction Using Green Infrastructure," Land, MDPI, vol. 10(3), pages 1-24, March.
    10. Yawei Qin & Yongjin Lei & Xiangyu Gong & Wanglai Ju, 2022. "A model involving meteorological factors for short- to medium-term, water-level predictions of small- and medium-sized urban rivers," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 725-739, March.
    11. Dudley Saunders & John Martin, 2022. "The Role of Green Infrastructure in Pluvial Flood Management and the Legislation Surrounding It: A Case Study in Bristol, UK," Sustainability, MDPI, vol. 14(21), pages 1-16, November.
    12. Kun Xie & Yanfeng He & Jong-Suk Kim & Sun-Kwon Yoon & Jie Liu & Hua Chen & Jung Hwan Lee & Xiang Zhang & Chong-Yu Xu, 2023. "Assessment of the Joint Impact of Rainfall Characteristics on Urban Flooding and Resilience Using the Copula Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(4), pages 1765-1784, March.
    13. Jian Wang & Fei Xue & Ruiying Jing & Qiaohui Lu & Yilong Huang & Xiang Sun & Wenbo Zhu, 2021. "Regenerating Sponge City to Sponge Watershed through an Innovative Framework for Urban Water Resilience," Sustainability, MDPI, vol. 13(10), pages 1-36, May.
    14. Song Liu & Mengnan Lin & Chunlin Li, 2019. "Analysis of the Effects of the River Network Structure and Urbanization on Waterlogging in High-Density Urban Areas—A Case Study of the Pudong New Area in Shanghai," IJERPH, MDPI, vol. 16(18), pages 1-13, September.
    15. Mao, Xuhui & Jia, Haifeng & Yu, Shaw L., 2017. "Assessing the ecological benefits of aggregate LID-BMPs through modelling," Ecological Modelling, Elsevier, vol. 353(C), pages 139-149.
    16. Amirhossein Nazari & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2023. "Integrated SUSTAIN-SWMM-MCDM Approach for Optimal Selection of LID Practices in Urban Stormwater Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(9), pages 3769-3793, July.
    17. Mariusz Starzec & Józef Dziopak & Daniel Słyś, 2020. "An Analysis of Stormwater Management Variants in Urban Catchments," Resources, MDPI, vol. 9(2), pages 1-17, February.
    18. Sandra Costa & Rik Peters & Ricardo Martins & Luuk Postmes & Jan Jacob Keizer & Peter Roebeling, 2021. "Effectiveness of Nature-Based Solutions on Pluvial Flood Hazard Mitigation: The Case Study of the City of Eindhoven (The Netherlands)," Resources, MDPI, vol. 10(3), pages 1-14, March.
    19. Yu Chen & Jacopo Gaspari, 2023. "Exploring an Integrated System for Urban Stormwater Management: A Systematic Literature Review of Solutions at Building and District Scales," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    20. Jong Mun Lee & Minji Park & Joong-Hyuk Min & Jinsun Kim & Jimin Lee & Heeseon Jang & Eun Hye Na, 2022. "Evaluation of SWMM-LID Modeling Applicability Considering Regional Characteristics for Optimal Management of Non-Point Pollutant Sources," Sustainability, MDPI, vol. 14(21), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:2:p:273-:d:130293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.