IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i11p2522-d182015.html
   My bibliography  Save this article

Geographic Analysis of Motor Neuron Disease Mortality and Heavy Metals Released to Rivers in Spain

Author

Listed:
  • Germán Sánchez-Díaz

    (Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III, Madrid 28029, Spain
    Department of Geology, Geography and Environmental Sciences, University of Alcala, Alcalá de Henares 28801, Spain
    Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid 28029, Spain)

  • Francisco Escobar

    (Department of Geology, Geography and Environmental Sciences, University of Alcala, Alcalá de Henares 28801, Spain)

  • Hannah Badland

    (Healthy Liveable Cities Group, Centre for Urban Research, RMIT University, Melbourne VIC 3001, Australia)

  • Greta Arias-Merino

    (Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III, Madrid 28029, Spain)

  • Manuel Posada de la Paz

    (Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III, Madrid 28029, Spain
    Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid 28029, Spain)

  • Verónica Alonso-Ferreira

    (Institute of Rare Diseases Research (IIER), Instituto de Salud Carlos III, Madrid 28029, Spain
    Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid 28029, Spain)

Abstract

The etiology of motor neuron disease (MND) is still unknown. The aims of this study were to: (1) analyze MND mortality at a fine-grained level; and (2) explore associations of MND and heavy metals released into Spanish river basins. MND deaths were extracted from the Spanish nationwide mortality registry (2007–2016). Standardized mortality ratios (SMRs) for MND were estimated at a municipal level. Sites that emitted quantities of heavy metals above the regulatory thresholds were obtained from the European Pollutant Release and Transfer Register database (2007–2015). The relative risks for non-exposed and exposed municipalities (considering a downstream 20 km river section) by type of heavy metal were analyzed using a log-linear model. SMRs were significantly higher in central and northern municipalities. SMRs were 1.14 (1.10–1.17) higher in areas exposed to heavy metals than in non-exposed areas: 0.95 (0.92–0.96). Considering the different metals, we found the following increased MND death risks in exposed areas: 20.9% higher risk for lead, 20.0% for zinc, 16.7% for arsenic, 15.7% for chromium, 15.4% for cadmium, 12.7% for copper, and 12.4% for mercury. This study provides associations between MND death risk and heavy metals in exposed municipalities. Further studies investigating heavy metal exposure are needed to progress in MND understanding.

Suggested Citation

  • Germán Sánchez-Díaz & Francisco Escobar & Hannah Badland & Greta Arias-Merino & Manuel Posada de la Paz & Verónica Alonso-Ferreira, 2018. "Geographic Analysis of Motor Neuron Disease Mortality and Heavy Metals Released to Rivers in Spain," IJERPH, MDPI, vol. 15(11), pages 1-10, November.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:11:p:2522-:d:182015
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/11/2522/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/11/2522/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laura M. Plum & Lothar Rink & Hajo Haase, 2010. "The Essential Toxin: Impact of Zinc on Human Health," IJERPH, MDPI, vol. 7(4), pages 1-24, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jane A. Parkin Kullmann & Roger Pamphlett, 2018. "A Comparison of Mercury Exposure from Seafood Consumption and Dental Amalgam Fillings in People with and without Amyotrophic Lateral Sclerosis (ALS): An International Online Case-Control Study," IJERPH, MDPI, vol. 15(12), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ru Zhang & Yonghua Li & Yuefeng Xu & Zhenfeng Zang & Hairong Li & Li Wang, 2020. "Effects of Dietary Supplements on the Bioaccessibility of Se, Zn and Cd in Rice: Preliminary Observations from In Vitro Gastrointestinal Simulation Tests," IJERPH, MDPI, vol. 17(14), pages 1-11, July.
    2. Yuliia Medvedeva & Anatolii Kucher & Joanna Lipsa & Maria Hełdak, 2021. "Human Health Risk Assessment on the Consumption of Apples Growing in Urbanized Areas: Case of Kharkiv, Ukraine," IJERPH, MDPI, vol. 18(4), pages 1-14, February.
    3. Chirhakarhula E. Chubaka & Harriet Whiley & John W. Edwards & Kirstin E. Ross, 2018. "Lead, Zinc, Copper, and Cadmium Content of Water from South Australian Rainwater Tanks," IJERPH, MDPI, vol. 15(7), pages 1-12, July.
    4. Shi-Bo Fang & Hao Hu & Wan-Chun Sun & Jian-Jun Pan, 2011. "Spatial Variations of Heavy Metals in the Soils of Vegetable-Growing Land along Urban-Rural Gradient of Nanjing, China," IJERPH, MDPI, vol. 8(6), pages 1-12, May.
    5. Hiroshi Yasuda & Toyoharu Tsutsui, 2013. "Assessment of Infantile Mineral Imbalances in Autism Spectrum Disorders (ASDs)," IJERPH, MDPI, vol. 10(11), pages 1-17, November.
    6. Luana C. S. Leite & Elaine S. de P. Melo & Daniela G. Arakaki & Elisvânia F. dos Santos & Valter A. do Nascimento, 2020. "Human Health Risk Assessment through Roasted Meats Consumption," IJERPH, MDPI, vol. 17(18), pages 1-23, September.
    7. Nayara Vieira de Lima & Daniela Granja Arakaki & Elaine Silva de Pádua Melo & David Johane Machate & Valter Aragão do Nascimento, 2021. "Assessment of Trace Elements Supply in Canned Tuna Fish Commercialized for Human Consumption in Brazil," IJERPH, MDPI, vol. 18(22), pages 1-17, November.
    8. Thomas Murphy & Kongkea Phan & Kim Neil Irvine & David Lean, 2021. "The Role of Micronutrients and Toxic Metals in the Management of Epidemics in Cambodia," IJERPH, MDPI, vol. 18(21), pages 1-25, October.
    9. Michał Kupiec & Paweł Pieńkowski & Beata Bosiacka & Izabela Gutowska & Patrycja Kupnicka & Adam Prokopowicz & Dariusz Chlubek & Irena Baranowska-Bosiacka, 2019. "Old and New Threats—Trace Metals and Fluoride Contamination in Soils at Defunct Smithy Sites," IJERPH, MDPI, vol. 16(5), pages 1-20, March.
    10. Uchenna Okereafor & Mamookho Makhatha & Lukhanyo Mekuto & Nkemdinma Uche-Okereafor & Tendani Sebola & Vuyo Mavumengwana, 2020. "Toxic Metal Implications on Agricultural Soils, Plants, Animals, Aquatic life and Human Health," IJERPH, MDPI, vol. 17(7), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:11:p:2522-:d:182015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.