IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v13y2016i3p345-d66183.html
   My bibliography  Save this article

Analysis of the Nonlinear Trends and Non-Stationary Oscillations of Regional Precipitation in Xinjiang, Northwestern China, Using Ensemble Empirical Mode Decomposition

Author

Listed:
  • Bin Guo

    (College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
    State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and Ministry of Science & Technology, Shandong University of Science and Technology, Qingdao 266590, China
    State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Key Laboratory of Surveying and Mapping Technology on Island and Reef, National Administration of Surveying, Mapping and Geoinfomation, Shandong University of Science and Technology, Qingdao 266590, China)

  • Zhongsheng Chen

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Key Laboratory of Geographic Information Science Ministry of Education, East China Normal University, Shanghai 200241, China
    These authors contributed equally to this work.)

  • Jinyun Guo

    (College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
    State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and Ministry of Science & Technology, Shandong University of Science and Technology, Qingdao 266590, China)

  • Feng Liu

    (College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
    These authors contributed equally to this work.)

  • Chuanfa Chen

    (College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
    State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and Ministry of Science & Technology, Shandong University of Science and Technology, Qingdao 266590, China)

  • Kangli Liu

    (College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China)

Abstract

Changes in precipitation could have crucial influences on the regional water resources in arid regions such as Xinjiang. It is necessary to understand the intrinsic multi-scale variations of precipitation in different parts of Xinjiang in the context of climate change. In this study, based on precipitation data from 53 meteorological stations in Xinjiang during 1960–2012, we investigated the intrinsic multi-scale characteristics of precipitation variability using an adaptive method named ensemble empirical mode decomposition (EEMD). Obvious non-linear upward trends in precipitation were found in the north, south, east and the entire Xinjiang. Changes in precipitation in Xinjiang exhibited significant inter-annual scale (quasi-2 and quasi-6 years) and inter-decadal scale (quasi-12 and quasi-23 years). Moreover, the 2–3-year quasi-periodic fluctuation was dominant in regional precipitation and the inter-annual variation had a considerable effect on the regional-scale precipitation variation in Xinjiang. We also found that there were distinctive spatial differences in variation trends and turning points of precipitation in Xinjiang. The results of this study indicated that compared to traditional decomposition methods, the EEMD method, without using any a priori determined basis functions, could effectively extract the reliable multi-scale fluctuations and reveal the intrinsic oscillation properties of climate elements.

Suggested Citation

  • Bin Guo & Zhongsheng Chen & Jinyun Guo & Feng Liu & Chuanfa Chen & Kangli Liu, 2016. "Analysis of the Nonlinear Trends and Non-Stationary Oscillations of Regional Precipitation in Xinjiang, Northwestern China, Using Ensemble Empirical Mode Decomposition," IJERPH, MDPI, vol. 13(3), pages 1-20, March.
  • Handle: RePEc:gam:jijerp:v:13:y:2016:i:3:p:345-:d:66183
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/13/3/345/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/13/3/345/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Myles R. Allen & William J. Ingram, 2002. "Constraints on future changes in climate and the hydrologic cycle," Nature, Nature, vol. 419(6903), pages 224-232, September.
    2. Yunjing Wang & Yuhan Rao & Xiaoxu Wu & Hainan Zhao & Jin Chen, 2015. "A Method for Screening Climate Change-Sensitive Infectious Diseases," IJERPH, MDPI, vol. 12(1), pages 1-17, January.
    3. Tobias Siegfried & Thomas Bernauer & Renaud Guiennet & Scott Sellars & Andrew Robertson & Justin Mankin & Peter Bauer-Gottwein & Andrey Yakovlev, 2012. "Will climate change exacerbate water stress in Central Asia?," Climatic Change, Springer, vol. 112(3), pages 881-899, June.
    4. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Xiao-Yun Chen, 2015. "Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2655-2675, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R. Bryson Touchstone & Kathleen Sherman-Morris, 2016. "Vulnerability to prolonged cold: a case study of the Zeravshan Valley of Tajikistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 1279-1300, September.
    2. Xueke Li & Amanda H. Lynch, 2023. "New insights into projected Arctic sea road: operational risks, economic values, and policy implications," Climatic Change, Springer, vol. 176(4), pages 1-16, April.
    3. Baoni Li & Lihua Xiong & Quan Zhang & Shilei Chen & Han Yang & Shuhui Guo, 2022. "Effects of land use/cover change on atmospheric humidity in three urban agglomerations in the Yangtze River Economic Belt, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 577-613, August.
    4. Festo Richard Silungwe & Frieder Graef & Sonoko Dorothea Bellingrath-Kimura & Emmanuel A Chilagane & Siza Donald Tumbo & Fredrick Cassian Kahimba & Marcos Alberto Lana, 2019. "Modelling Rainfed Pearl Millet Yield Sensitivity to Abiotic Stresses in Semi-Arid Central Tanzania, Eastern Africa," Sustainability, MDPI, vol. 11(16), pages 1-18, August.
    5. Salman Sharifazari & Shahab Araghinejad, 2015. "Development of a Nonparametric Model for Multivariate Hydrological Monthly Series Simulation Considering Climate Change Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5309-5322, November.
    6. Li, Zhi & Fang, Gonghuan & Chen, Yaning & Duan, Weili & Mukanov, Yerbolat, 2020. "Agricultural water demands in Central Asia under 1.5 °C and 2.0 °C global warming," Agricultural Water Management, Elsevier, vol. 231(C).
    7. Mohammad Zounemat-Kermani, 2016. "Investigating Chaos and Nonlinear Forecasting in Short Term and Mid-term River Discharge," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1851-1865, March.
    8. Peng Jiang & Zhongbo Yu & Mahesh R. Gautam & Kumud Acharya, 2016. "The Spatiotemporal Characteristics of Extreme Precipitation Events in the Western United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4807-4821, October.
    9. Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
    10. Vidhi Vig & Anmol Kaur, 2022. "Time series forecasting and mathematical modeling of COVID-19 pandemic in India: a developing country struggling to cope up," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2920-2933, December.
    11. Bhaduri, Anik & Djanibekov, Nodir, 2015. "Adoption of Water-Efficient Technology: Role of Water Price Flexibility, Tenure Uncerntainty and Production Targets in Uzbekistan," 2015 Conference, August 9-14, 2015, Milan, Italy 211336, International Association of Agricultural Economists.
    12. Christoph Schär & Nikolina Ban & Erich M. Fischer & Jan Rajczak & Jürg Schmidli & Christoph Frei & Filippo Giorgi & Thomas R. Karl & Elizabeth J. Kendon & Albert M. G. Klein Tank & Paul A. O’Gorman & , 2016. "Percentile indices for assessing changes in heavy precipitation events," Climatic Change, Springer, vol. 137(1), pages 201-216, July.
    13. Xuezhi Tan & Xinxin Wu & Zeqin Huang & Jianyu Fu & Xuejin Tan & Simin Deng & Yaxin Liu & Thian Yew Gan & Bingjun Liu, 2023. "Increasing global precipitation whiplash due to anthropogenic greenhouse gas emissions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Lin Qiu & Can-can Liu, 2017. "The Annual Maximum Flood Peak Discharge Forecasting Using Hermite Projection Pursuit Regression with SSO and LS Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 461-477, January.
    15. Baoying Shan & Ping Guo & Shanshan Guo & Zhong Li, 2019. "A Price-Forecast-Based Irrigation Scheduling Optimization Model under the Response of Fruit Quality and Price to Water," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    16. Shakil Ahmad Romshoo & Jasia Bashir & Irfan Rashid, 2020. "Twenty-first century-end climate scenario of Jammu and Kashmir Himalaya, India, using ensemble climate models," Climatic Change, Springer, vol. 162(3), pages 1473-1491, October.
    17. Liangxu Liu & Xueyong Zhao & Qinglan Meng & He Zhao & Xiaoqian Lu & Junkai Gao & Xueli Chang, 2017. "Annual Precipitation Fluctuation and Spatial Differentiation Characteristics of the Horqin Region," Sustainability, MDPI, vol. 9(1), pages 1-16, January.
    18. Bing-Chen Jhong & Ching-Pin Tung, 2018. "Evaluating Future Joint Probability of Precipitation Extremes with a Copula-Based Assessing Approach in Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4253-4274, October.
    19. Megan Ceronsky & David Anthoff & Cameron Hepburn & Richard S.J. Tol, 2005. "Checking The Price Tag On Catastrophe: The Social Cost Of Carbon Under Non-Linear Climate Response," Working Papers FNU-87, Research unit Sustainability and Global Change, Hamburg University, revised Aug 2005.
    20. Leslie A. Jones & Clint C. Muhlfeld & Lucy A. Marshall, 2017. "Projected warming portends seasonal shifts of stream temperatures in the Crown of the Continent Ecosystem, USA and Canada," Climatic Change, Springer, vol. 144(4), pages 641-655, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:13:y:2016:i:3:p:345-:d:66183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.