IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i1p111-d87702.html
   My bibliography  Save this article

Annual Precipitation Fluctuation and Spatial Differentiation Characteristics of the Horqin Region

Author

Listed:
  • Liangxu Liu

    (Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China)

  • Xueyong Zhao

    (Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China)

  • Qinglan Meng

    (Department of Geography and Tourist Science, Lu Dong University, Yantai 264025, China)

  • He Zhao

    (Department of Geography and Tourist Science, Lu Dong University, Yantai 264025, China)

  • Xiaoqian Lu

    (Department of Geography and Tourist Science, Lu Dong University, Yantai 264025, China)

  • Junkai Gao

    (Department of Geography and Tourist Science, Lu Dong University, Yantai 264025, China)

  • Xueli Chang

    (Department of Geography and Tourist Science, Lu Dong University, Yantai 264025, China)

Abstract

Precipitation is the main water source for vegetation survival in arid and semi-arid areas. However, previous studies always focus on the effects of precipitation in different time scales, but ignore the effects of precipitation in different spatial scales. To further study the effects of precipitation fluctuation in different spatial scales, we used the wavelet analysis method to analyze its temporal and spatial change based on data from eighteen meteorological stations during 1961–2015 in Horqin region. Results showed that: (1) from the overall tendency of precipitation changes, the precipitation inter-annual variations in Horqin region had the tendency of gradually decreasing from the southeast (District IV) to the northwest; (2) the precipitation anomalies of District I–IV between 1960 and 1980 were small and approximate to the normal value; (3) in the time scale of 23–32 years, the cyclical fluctuations were very significant and the annual precipitation underwent two cyclical fluctuations from a period of low precipitation to a period of high precipitation; and (4) as results of analyzing the spatial wavelet variance of sub-region, the main cycle of precipitation in District I, District II and District III was between 10 and 11 years, while the main cycle of precipitation in District IV was 25 years. The main conclusions include the following. (1) This region tended to be arid, and the precipitation gradually decreased from the southeast (District IV) to northwest (District I). (2) The influence of spatial differentiation characteristics on precipitation fluctuation in this region was cyclical fluctuation, which gradually decreased from the southeast to the northwest. The length of the cyclical change period gradually shortened. In the first main cycle, whose annual precipitation changes were most significant, the changing characteristic was District IV and District I decreased from 25 years to 10 years. (3) Predicated from the cyclical changing law that the annual precipitation decreases from high to low, the Horqin region will remain in a period of low precipitation between 2016 and 2020.

Suggested Citation

  • Liangxu Liu & Xueyong Zhao & Qinglan Meng & He Zhao & Xiaoqian Lu & Junkai Gao & Xueli Chang, 2017. "Annual Precipitation Fluctuation and Spatial Differentiation Characteristics of the Horqin Region," Sustainability, MDPI, vol. 9(1), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:1:p:111-:d:87702
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/1/111/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/1/111/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gilles Ramstein & Frédéric Fluteau & Jean Besse & Sylvie Joussaume, 1997. "Effect of orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years," Nature, Nature, vol. 386(6627), pages 788-795, April.
    2. Kantelhardt, Jan W. & Rybski, Diego & Zschiegner, Stephan A. & Braun, Peter & Koscielny-Bunde, Eva & Livina, Valerie & Havlin, Shlomo & Bunde, Armin, 2003. "Multifractality of river runoff and precipitation: comparison of fluctuation analysis and wavelet methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(1), pages 240-245.
    3. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Xiao-Yun Chen, 2015. "Improving Forecasting Accuracy of Annual Runoff Time Series Using ARIMA Based on EEMD Decomposition," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2655-2675, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jovanovic, Tijana & Mejía, Alfonso & Gall, Heather & Gironás, Jorge, 2016. "Effect of urbanization on the long-term persistence of streamflow records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 208-221.
    2. Linan Sun & Antao Wang & Jiayao Wang, 2022. "Spatial Characteristics Analysis for Coupling Strength among Air Pollutants during a Severe Haze Period in Zhengzhou, China," IJERPH, MDPI, vol. 19(14), pages 1-19, July.
    3. Salman Sharifazari & Shahab Araghinejad, 2015. "Development of a Nonparametric Model for Multivariate Hydrological Monthly Series Simulation Considering Climate Change Impacts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5309-5322, November.
    4. Mohammad Zounemat-Kermani, 2016. "Investigating Chaos and Nonlinear Forecasting in Short Term and Mid-term River Discharge," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1851-1865, March.
    5. Quande Qin & Huangda He & Li Li & Ling-Yun He, 2020. "A Novel Decomposition-Ensemble Based Carbon Price Forecasting Model Integrated with Local Polynomial Prediction," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1249-1273, April.
    6. Vidhi Vig & Anmol Kaur, 2022. "Time series forecasting and mathematical modeling of COVID-19 pandemic in India: a developing country struggling to cope up," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2920-2933, December.
    7. Wen-chuan Wang & Kwok-wing Chau & Dong-mei Xu & Lin Qiu & Can-can Liu, 2017. "The Annual Maximum Flood Peak Discharge Forecasting Using Hermite Projection Pursuit Regression with SSO and LS Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 461-477, January.
    8. Baoying Shan & Ping Guo & Shanshan Guo & Zhong Li, 2019. "A Price-Forecast-Based Irrigation Scheduling Optimization Model under the Response of Fruit Quality and Price to Water," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    9. de Benicio, Rosilda B. & Stošić, Tatijana & de Figueirêdo, P.H. & Stošić, Borko D., 2013. "Multifractal behavior of wild-land and forest fire time series in Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6367-6374.
    10. Todd Zorick & Mark A Mandelkern, 2013. "Multifractal Detrended Fluctuation Analysis of Human EEG: Preliminary Investigation and Comparison with the Wavelet Transform Modulus Maxima Technique," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-7, July.
    11. Ali Danandeh Mehr & Vahid Nourani, 2018. "Season Algorithm-Multigene Genetic Programming: A New Approach for Rainfall-Runoff Modelling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2665-2679, June.
    12. Fu Qiao, 2020. "Study on Price Fluctuation of Industry Index in Chinas Stock Market Based on Empirical Mode Decomposition," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 10(5), pages 559-573, May.
    13. Parisa-Sadat Ashofteh & Taher Rajaee & Parvin Golfam, 2017. "Assessment of Water Resources Development Projects under Conditions of Climate Change Using Efficiency Indexes (EIs)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3723-3744, September.
    14. Ervin Shan Khai Tiu & Yuk Feng Huang & Jing Lin Ng & Nouar AlDahoul & Ali Najah Ahmed & Ahmed Elshafie, 2022. "An evaluation of various data pre-processing techniques with machine learning models for water level prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 121-153, January.
    15. Al Sawaf, Mohamad Basel & Kawanisi, Kiyosi & Kagami, Junya & Bahreinimotlagh, Masoud & Danial, Mochammad Meddy, 2017. "Scaling characteristics of mountainous river flow fluctuations determined using a shallow-water acoustic tomography system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 11-20.
    16. Zhong-kai Feng & Wen-jing Niu & Zhi-qiang Jiang & Hui Qin & Zhen-guo Song, 2020. "Monthly Operation Optimization of Cascade Hydropower Reservoirs with Dynamic Programming and Latin Hypercube Sampling for Dimensionality Reduction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 2029-2041, April.
    17. Fan, Xinying, 2022. "A method for the generation of typical meteorological year data using ensemble empirical mode decomposition for different climates of China and performance comparison analysis," Energy, Elsevier, vol. 240(C).
    18. Zong-chang Yang, 2018. "Predictive Modeling of Hourly Water-Level Fluctuations Based on the DCT Least-Squares Extended Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(3), pages 1117-1131, February.
    19. Peng Chen & Andrew Vivian & Cheng Ye, 2022. "Forecasting carbon futures price: a hybrid method incorporating fuzzy entropy and extreme learning machine," Annals of Operations Research, Springer, vol. 313(1), pages 559-601, June.
    20. Emanuele Ogliari & Alfredo Nespoli & Marco Mussetta & Silvia Pretto & Andrea Zimbardo & Nicholas Bonfanti & Manuele Aufiero, 2020. "A Hybrid Method for the Run-Of-The-River Hydroelectric Power Plant Energy Forecast: HYPE Hydrological Model and Neural Network," Forecasting, MDPI, vol. 2(4), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:1:p:111-:d:87702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.