IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v17y2025i4p168-d1632675.html
   My bibliography  Save this article

NUDIF: A Non-Uniform Deployment Framework for Distributed Inference in Heterogeneous Edge Clusters

Author

Listed:
  • Peng Li

    (National Key Laboratory of Complex Aviation System Simulation, Chengdu 610036, China
    Southwest China Institute of Electronic Technology, Chengdu 610036, China)

  • Chen Qing

    (National Key Laboratory of Complex Aviation System Simulation, Chengdu 610036, China
    Southwest China Institute of Electronic Technology, Chengdu 610036, China)

  • Hao Liu

    (School of Computer Science (National Pilot Software Engineering School), Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, China)

Abstract

Distributed inference in resource-constrained heterogeneous edge clusters is fundamentally limited by disparities in device capabilities and load imbalance issues. Existing methods predominantly focus on optimizing single-pipeline allocation schemes for partitioned sub-models. However, such approaches often lead to load imbalance and suboptimal resource utilization under concurrent batch processing scenarios. To address these challenges, we propose a non-uniform deployment inference framework (NUDIF), which achieves high-throughput distributed inference service by adapting to heterogeneous resources and balancing inter-stage processing capabilities. Formulated as a mixed-integer nonlinear programming (MINLP) problem, NUDIF is responsible for planning the number of instances for each sub-model and determining the specific devices for deploying these instances, while considering computational capacity, memory constraints, and communication latency. This optimization minimizes inter-stage processing discrepancies and maximizes resource utilization. Experimental evaluations demonstrate that NUDIF enhances system throughput by an average of 9.95% compared to traditional single-pipeline optimization methods under various scales of cluster device configurations.

Suggested Citation

  • Peng Li & Chen Qing & Hao Liu, 2025. "NUDIF: A Non-Uniform Deployment Framework for Distributed Inference in Heterogeneous Edge Clusters," Future Internet, MDPI, vol. 17(4), pages 1-14, April.
  • Handle: RePEc:gam:jftint:v:17:y:2025:i:4:p:168-:d:1632675
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/17/4/168/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/17/4/168/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xin & Pan, Yanchun & Jiang, Shiqiang & Huang, Qiang & Chen, Zhimin & Zhang, Mingxia & Zhang, Zuoyao, 2021. "Locate vaccination stations considering travel distance, operational cost, and work schedule," Omega, Elsevier, vol. 101(C).
    2. Jianyuan Zhai & Fani Boukouvala, 2022. "Data-driven spatial branch-and-bound algorithms for box-constrained simulation-based optimization," Journal of Global Optimization, Springer, vol. 82(1), pages 21-50, January.
    3. Radu Baltean-Lugojan & Ruth Misener, 2018. "Piecewise parametric structure in the pooling problem: from sparse strongly-polynomial solutions to NP-hardness," Journal of Global Optimization, Springer, vol. 71(4), pages 655-690, August.
    4. Campos, Juan S. & Misener, Ruth & Parpas, Panos, 2019. "A multilevel analysis of the Lasserre hierarchy," European Journal of Operational Research, Elsevier, vol. 277(1), pages 32-41.
    5. Chan, Chi Kin & Fang, Fei & Langevin, André, 2018. "Single-vendor multi-buyer supply chain coordination with stochastic demand," International Journal of Production Economics, Elsevier, vol. 206(C), pages 110-133.
    6. Zheng, Xuyue & Wu, Guoce & Qiu, Yuwei & Zhan, Xiangyan & Shah, Nilay & Li, Ning & Zhao, Yingru, 2018. "A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China," Applied Energy, Elsevier, vol. 210(C), pages 1126-1140.
    7. David E. Bernal & Zedong Peng & Jan Kronqvist & Ignacio E. Grossmann, 2022. "Alternative regularizations for Outer-Approximation algorithms for convex MINLP," Journal of Global Optimization, Springer, vol. 84(4), pages 807-842, December.
    8. Frauke Liers & Alexander Martin & Maximilian Merkert & Nick Mertens & Dennis Michaels, 2021. "Solving mixed-integer nonlinear optimization problems using simultaneous convexification: a case study for gas networks," Journal of Global Optimization, Springer, vol. 80(2), pages 307-340, June.
    9. Taras Bodnar & Mathias Lindholm & Erik Thorsén & Joanna Tyrcha, 2021. "Quantile-based optimal portfolio selection," Computational Management Science, Springer, vol. 18(3), pages 299-324, July.
    10. Ngueveu, Sandra Ulrich, 2019. "Piecewise linear bounding of univariate nonlinear functions and resulting mixed integer linear programming-based solution methods," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1058-1071.
    11. Burcu Beykal & Styliani Avraamidou & Ioannis P. E. Pistikopoulos & Melis Onel & Efstratios N. Pistikopoulos, 2020. "DOMINO: Data-driven Optimization of bi-level Mixed-Integer NOnlinear Problems," Journal of Global Optimization, Springer, vol. 78(1), pages 1-36, September.
    12. Daniel Sanin-Villa & Oscar Danilo Montoya & Walter Gil-González & Luis Fernando Grisales-Noreña & Alberto-Jesus Perea-Moreno, 2023. "Parameter Estimation of a Thermoelectric Generator by Using Salps Search Algorithm," Energies, MDPI, vol. 16(11), pages 1-16, May.
    13. Moritz Link & Stefan Volkwein, 2023. "Adaptive piecewise linear relaxations for enclosure computations for nonconvex multiobjective mixed-integer quadratically constrained programs," Journal of Global Optimization, Springer, vol. 87(1), pages 97-132, September.
    14. Andrew Allman & Qi Zhang, 2021. "Branch-and-price for a class of nonconvex mixed-integer nonlinear programs," Journal of Global Optimization, Springer, vol. 81(4), pages 861-880, December.
    15. Meenarli Sharma & Prashant Palkar & Ashutosh Mahajan, 2022. "Linearization and parallelization schemes for convex mixed-integer nonlinear optimization," Computational Optimization and Applications, Springer, vol. 81(2), pages 423-478, March.
    16. De, Arijit & Choudhary, Alok & Turkay, Metin & Tiwari, Manoj K., 2021. "Bunkering policies for a fuel bunker management problem for liner shipping networks," European Journal of Operational Research, Elsevier, vol. 289(3), pages 927-939.
    17. Zhe Liu & Shurong Li, 2022. "A numerical method for interval multi-objective mixed-integer optimal control problems based on quantum heuristic algorithm," Annals of Operations Research, Springer, vol. 311(2), pages 853-898, April.
    18. Amaioua, Nadir & Audet, Charles & Conn, Andrew R. & Le Digabel, Sébastien, 2018. "Efficient solution of quadratically constrained quadratic subproblems within the mesh adaptive direct search algorithm," European Journal of Operational Research, Elsevier, vol. 268(1), pages 13-24.
    19. Yuanhao Zhang & Jiabao Zhao, 2022. "A Novel Coordination Mechanism for Connected and Automated Vehicles in the Multi-Intersection Road Network," Energies, MDPI, vol. 15(14), pages 1-16, July.
    20. Miten Mistry & Dimitrios Letsios & Gerhard Krennrich & Robert M. Lee & Ruth Misener, 2021. "Mixed-Integer Convex Nonlinear Optimization with Gradient-Boosted Trees Embedded," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1103-1119, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:4:p:168-:d:1632675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.