IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v7y2025i3p40-d1707515.html
   My bibliography  Save this article

Probabilistic Projections of South Korea’s Population Decline and Subnational Dynamics

Author

Listed:
  • Jeongsoo Kim

    (Texas Demographic Center, The University of Texas, San Antonio, TX 78249, USA)

Abstract

This study adapts the United Nations’ methodology for national probabilistic population projections to subnational contexts. The Bayesian approach used by the UN addresses data collection complexities effectively. By applying hierarchical model assumptions, national projections can be extended to subnational levels. There is a significant demand for subnational projections with uncertainty measures, especially in South Korea, where low fertility rates have led to rapid population decline, impacting economic and social conditions. The Bayesian hierarchical model predicts South Korea’s population will peak in 2024 and then decline sharply, potentially reaching 30 million by 2100 or below 20 million in lower projections. Seoul’s population may reduce to one-third of its 2020 size by 2100. Persistently low fertility rates result in a high dependency ratio and accelerated aging, particularly in Seoul and Gyeonggi-do. Although old-age dependency ratios might improve slightly by 2100, economic challenges such as reduced purchasing power and socio-economic strain from an aging population and declining fertility remain significant. A probabilistic approach can enhance resource allocation strategies to support the aging population at both national and subnational levels.

Suggested Citation

  • Jeongsoo Kim, 2025. "Probabilistic Projections of South Korea’s Population Decline and Subnational Dynamics," Forecasting, MDPI, vol. 7(3), pages 1-19, July.
  • Handle: RePEc:gam:jforec:v:7:y:2025:i:3:p:40-:d:1707515
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/7/3/40/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/7/3/40/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonathan Azose & Adrian Raftery, 2015. "Bayesian Probabilistic Projection of International Migration," Demography, Springer;Population Association of America (PAA), vol. 52(5), pages 1627-1650, October.
    2. Stefan Rayer & Stanley Smith & Jeff Tayman, 2009. "Empirical Prediction Intervals for County Population Forecasts," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 28(6), pages 773-793, December.
    3. Stanley Smith & Terry Sincich, 1988. "Stability over time in the distribution of population forecast errors," Demography, Springer;Population Association of America (PAA), vol. 25(3), pages 461-474, August.
    4. Ševčíková, Hana & Alkema, Leontine & Raftery, Adrian, 2011. "bayesTFR: An R package for Probabilistic Projections of the Total Fertility Rate," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i01).
    5. Tom Wilson & Huw Brokensha & Francisco Rowe & Ludi Simpson, 2018. "Insights from the Evaluation of Past Local Area Population Forecasts," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 37(1), pages 137-155, February.
    6. Monica Alexander & Emilio Zagheni & Magali Barbieri, 2017. "A Flexible Bayesian Model for Estimating Subnational Mortality," Demography, Springer;Population Association of America (PAA), vol. 54(6), pages 2025-2041, December.
    7. Seran Jeon & Myounghoon Lee & Seiyong Kim, 2021. "Factors Influencing Fertility Intentions of Newlyweds in South Korea: Focus on Demographics, Socioeconomics, Housing Situation, Residential Satisfaction, and Housing Expectation," Sustainability, MDPI, vol. 13(3), pages 1-13, February.
    8. Leontine Alkema & Adrian Raftery & Patrick Gerland & Samuel Clark & François Pelletier & Thomas Buettner & Gerhard Heilig, 2011. "Probabilistic Projections of the Total Fertility Rate for All Countries," Demography, Springer;Population Association of America (PAA), vol. 48(3), pages 815-839, August.
    9. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    10. Sojung Lim, 2021. "Socioeconomic differentials in fertility in South Korea," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 44(39), pages 941-978.
    11. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    12. Tashman, Leonard J., 2000. "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, Elsevier, vol. 16(4), pages 437-450.
    13. Adrian Raftery & Jennifer Chunn & Patrick Gerland & Hana Ševčíková, 2013. "Bayesian Probabilistic Projections of Life Expectancy for All Countries," Demography, Springer;Population Association of America (PAA), vol. 50(3), pages 777-801, June.
    14. Peter Congdon, 2009. "Life Expectancies for Small Areas: A Bayesian Random Effects Methodology," International Statistical Review, International Statistical Institute, vol. 77(2), pages 222-240, August.
    15. Hana Sevcikova & Patrick Gerland & Adrian E. Raftery, 2018. "Probabilistic projection of subnational total fertility rates," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 38(60), pages 1843-1884.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    2. Carl P. Schmertmann & Marcos R. Gonzaga, 2018. "Bayesian Estimation of Age-Specific Mortality and Life Expectancy for Small Areas With Defective Vital Records," Demography, Springer;Population Association of America (PAA), vol. 55(4), pages 1363-1388, August.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Patrizio Vanella & Philipp Deschermeier & Christina B. Wilke, 2020. "An Overview of Population Projections—Methodological Concepts, International Data Availability, and Use Cases," Forecasting, MDPI, vol. 2(3), pages 1-18, September.
    5. Koundouri, Phoebe & Papayiannis, Georgios I. & Vassilopoulos, Achilleas & Yannacopoulos, Athanasios N., 2023. "Probabilistic Scenario-Based Assessment of National Food Security Risks with Application to Egypt and Ethiopia," MPRA Paper 122007, University Library of Munich, Germany.
    6. David J Sharrow & Samuel J Clark & Adrian E Raftery, 2014. "Modeling Age-Specific Mortality for Countries with Generalized HIV Epidemics," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-10, May.
    7. Agnieszka Orwat-Acedańska, 2024. "Accuracy of small area mortality prediction methods: evidence from Poland," Journal of Population Research, Springer, vol. 41(1), pages 1-20, March.
    8. Hana Sevcikova & Patrick Gerland & Adrian E. Raftery, 2018. "Probabilistic projection of subnational total fertility rates," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 38(60), pages 1843-1884.
    9. Francesco Billari & Rebecca Graziani & Eugenio Melilli, 2014. "Stochastic Population Forecasting Based on Combinations of Expert Evaluations Within the Bayesian Paradigm," Demography, Springer;Population Association of America (PAA), vol. 51(5), pages 1933-1954, October.
    10. Phoebe Koundouri & Georgios I. Papayiannis & Achilleas Vassilopoulos & Athanasios Yannacopoulos, 2022. "A general framework for the generation of probabilistic socioeconomic scenarios and risk quantification concerning food security with application in the Upper Nile river basin," DEOS Working Papers 2203, Athens University of Economics and Business.
    11. Niall Newsham & Francisco Rowe, 2021. "Projecting the demographic impact of Syrian migration in a rapidly ageing society, Germany," Journal of Geographical Systems, Springer, vol. 23(2), pages 231-261, April.
    12. repec:osf:socarx:syzwx_v1 is not listed on IDEAS
    13. Raftery, Adrian E. & Ševčíková, Hana, 2023. "Probabilistic population forecasting: Short to very long-term," International Journal of Forecasting, Elsevier, vol. 39(1), pages 73-97.
    14. Michael Pearce & Adrian E. Raftery, 2021. "Probabilistic forecasting of maximum human lifespan by 2100 using Bayesian population projections," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 44(52), pages 1271-1294.
    15. Monica Alexander & Adrian E. Raftery, 2024. "Developing and implementing the UN's probabilistic population projections as a milestone for Bayesian demography: An interview with Adrian Raftery," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 51(1), pages 1-16.
    16. Jonathan Azose & Adrian Raftery, 2015. "Bayesian Probabilistic Projection of International Migration," Demography, Springer;Population Association of America (PAA), vol. 52(5), pages 1627-1650, October.
    17. Heer, Burkhard & Polito, Vito & Wickens, Michael R., 2020. "Population aging, social security and fiscal limits," Journal of Economic Dynamics and Control, Elsevier, vol. 116(C).
    18. Mei Sang & Jing Jiang & Xin Huang & Feifei Zhu & Qian Wang, 2024. "Spatial and temporal changes in population distribution and population projection at county level in China," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    19. Afua Durowaa-Boateng & Anne Goujon & Dilek Yildiz, 2023. "A Bayesian model for the reconstruction of education- and age-specific fertility rates: An application to African and Latin American countries," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 49(31), pages 809-848.
    20. José Rafael Caro-Barrera & María de los Baños García-Moreno García & Manuel Pérez-Priego, 2022. "Projecting Spanish fertility at regional level: A hierarchical Bayesian approach," PLOS ONE, Public Library of Science, vol. 17(10), pages 1-27, October.
    21. Meng Xu & Helge Brunborg & Joel E. Cohen, 2017. "Evaluating multi-regional population projections with Taylor’s law of mean–variance scaling and its generalisation," Journal of Population Research, Springer, vol. 34(1), pages 79-99, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:7:y:2025:i:3:p:40-:d:1707515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.