Predictive Maintenance Framework for Fault Detection in Remote Terminal Units
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Chatfield, Chris, 1986. "Exploratory data analysis," European Journal of Operational Research, Elsevier, vol. 23(1), pages 5-13, January.
- Li, Xiang & Ding, Qian & Sun, Jian-Qiao, 2018. "Remaining useful life estimation in prognostics using deep convolution neural networks," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 1-11.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Basora, Luis & Viens, Arthur & Chao, Manuel Arias & Olive, Xavier, 2025. "A benchmark on uncertainty quantification for deep learning prognostics," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Xu, Zhiqiang & Zhang, Yujie & Miao, Qiang, 2024. "An attention-based multi-scale temporal convolutional network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
- Lin, Yan-Hui & Chang, Liang & Guan, Lu-Xin, 2024. "Enhanced stochastic recurrent hybrid model for RUL Predictions via Semi-supervised learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Li, Yuanfu & Chen, Yifan & Shao, Haonan & Zhang, Huisheng, 2023. "A novel dual attention mechanism combined with knowledge for remaining useful life prediction based on gated recurrent units," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
- Yuyan Yin & Jie Tian & Xinfeng Liu, 2025. "Remaining useful life prediction based on parallel multi-scale feature fusion network," Journal of Intelligent Manufacturing, Springer, vol. 36(5), pages 3111-3127, June.
- Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Zhuang, Jichao & Jia, Minping & Ding, Yifei & Ding, Peng, 2021. "Temporal convolution-based transferable cross-domain adaptation approach for remaining useful life estimation under variable failure behaviors," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Khaled Akkad & David He, 2023. "A dynamic mode decomposition based deep learning technique for prognostics," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2207-2224, June.
- Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Jiaxian Chen & Dongpeng Li & Ruyi Huang & Zhuyun Chen & Weihua Li, 2025. "A transfer regression network-based adaptive calibration method for remaining useful life prediction considering individual discrepancies in the degradation process of machinery," Journal of Intelligent Manufacturing, Springer, vol. 36(4), pages 2767-2783, April.
- Ma, Rui & Yang, Tao & Breaz, Elena & Li, Zhongliang & Briois, Pascal & Gao, Fei, 2018. "Data-driven proton exchange membrane fuel cell degradation predication through deep learning method," Applied Energy, Elsevier, vol. 231(C), pages 102-115.
- Fu, Song & Lin, Lin & Wang, Yue & Guo, Feng & Zhao, Minghang & Zhong, Baihong & Zhong, Shisheng, 2024. "MCA-DTCN: A novel dual-task temporal convolutional network with multi-channel attention for first prediction time detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Xiaojia Wang & Ting Huang & Keyu Zhu & Xibin Zhao, 2022. "LSTM-Based Broad Learning System for Remaining Useful Life Prediction," Mathematics, MDPI, vol. 10(12), pages 1-13, June.
- Bai, Guo-Peng & Er, Guo-Kang & Iu, Vai Pan, 2024. "A novel stochastic approach to investigate the probabilistic characteristics of the ship roll system with sinusoidal restoring force," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
- Apostolos Giannoulidis & Anastasios Gounaris & Athanasios Naskos & Nikodimos Nikolaidis & Daniel Caljouw, 2025. "Engineering and evaluating an unsupervised predictive maintenance solution: a cold-forming press case-study," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 2121-2139, March.
- Feiyue Deng & Yan Bi & Yongqiang Liu & Shaopu Yang, 2021. "Deep-Learning-Based Remaining Useful Life Prediction Based on a Multi-Scale Dilated Convolution Network," Mathematics, MDPI, vol. 9(23), pages 1-17, November.
- Tengda Huang & Sheng Fu & Haonan Feng & Jiafeng Kuang, 2019. "Bearing Fault Diagnosis Based on Shallow Multi-Scale Convolutional Neural Network with Attention," Energies, MDPI, vol. 12(20), pages 1-19, October.
- Zhang, Xin & Sun, Jiankai & Wang, Jiaxu & Jin, Yulin & Wang, Lei & Liu, Zhiwen, 2023. "PAOLTransformer: Pruning-adaptive optimal lightweight Transformer model for aero-engine remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
- Zhao, Hongqian & Chen, Zheng & Shu, Xing & Xiao, Renxin & Shen, Jiangwei & Liu, Yu & Liu, Yonggang, 2024. "Online surface temperature prediction and abnormal diagnosis of lithium-ion batteries based on hybrid neural network and fault threshold optimization," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
- Jiang, Chen & Qiu, Haobo & Yang, Zan & Chen, Liming & Gao, Liang & Li, Peigen, 2019. "A general failure-pursuing sampling framework for surrogate-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 47-59.
More about this item
Keywords
predictive maintenance; remote terminal unit; time-series forecasting; anomaly detection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:6:y:2024:i:2:p:14-265:d:1363667. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.