IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i5d10.1007_s10845-024-02399-y.html
   My bibliography  Save this article

Remaining useful life prediction based on parallel multi-scale feature fusion network

Author

Listed:
  • Yuyan Yin

    (Shandong Jianzhu University)

  • Jie Tian

    (Shandong Women’s University)

  • Xinfeng Liu

    (Shandong Jianzhu University)

Abstract

In the domain of Predictive Health Management (PHM), the prediction of Remaining Useful Life (RUL) is pivotal for averting machinery malfunctions and curtailing maintenance expenditures. Currently, most RUL prediction methods overlook the correlation between local and global information, which may lead to the loss of important features and, consequently, a subsequent decline in predictive precision. To address these limitations, this study presents a groundbreaking deep learning framework termed the Parallel Multi-Scale Feature Fusion Network (PM2FN). This approach leverages the advantages of different network structures by constructing two distinct feature extractors to capture both global and local information, thereby providing a more comprehensive feature set for RUL prediction. Experimental results on two publicly available datasets and a real-world dataset demonstrate the superiority and effectiveness of our method, offering a promising solution for industrial RUL prediction.

Suggested Citation

  • Yuyan Yin & Jie Tian & Xinfeng Liu, 2025. "Remaining useful life prediction based on parallel multi-scale feature fusion network," Journal of Intelligent Manufacturing, Springer, vol. 36(5), pages 3111-3127, June.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:5:d:10.1007_s10845-024-02399-y
    DOI: 10.1007/s10845-024-02399-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-024-02399-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-024-02399-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:5:d:10.1007_s10845-024-02399-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.