IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i9p730-d77831.html
   My bibliography  Save this article

Impact of Generator Stroke Length on Energy Production for a Direct Drive Wave Energy Converter

Author

Listed:
  • Yue Hong

    (Division for Electricity, Uppsala University, Uppsala 75121, Sweden)

  • Mikael Eriksson

    (Division for Electricity, Uppsala University, Uppsala 75121, Sweden
    Seabased AB, Sylveniusgatan 5 D, Uppsala 75450, Sweden)

  • Cecilia Boström

    (Division for Electricity, Uppsala University, Uppsala 75121, Sweden)

  • Rafael Waters

    (Division for Electricity, Uppsala University, Uppsala 75121, Sweden
    Seabased AB, Sylveniusgatan 5 D, Uppsala 75450, Sweden)

Abstract

The Lysekil wave energy converter (WEC), developed by the wave energy research group of Uppsala University, has evolved through a variety of mechanical designs since the first prototype was installed in 2006. The hundreds of engineering decisions made throughout the design processes have been based on a combination of theory, know-how from previous experiments, and educated guesses. One key parameter in the design of the WECs linear generator is the stroke length. A long stroke requires a taller WEC with associated economical and mechanical challenges, but a short stroke limits the power production. The 2-m stroke of the current WECs has been an educated guess for the Swedish wave climate, though the consequences of this choice on energy absorption have not been studied. When the WEC technology is considered for international waters, with larger waves and challenges of energy absorption and survivability, the subject of stroke length becomes even more relevant. This paper studies the impact of generator stroke length on energy absorption for three sites off the coasts of Sweden, Chile and Scotland. 2-m, 4-m, and unlimited stroke are considered. Power matrices for the studied WEC prototype are presented for each of the studied stroke lengths. Presented results quantify the losses incurred by a limited stroke. The results indicate that a 2-m stroke length is likely to be a good choice for Sweden, but 4-m is likely to be necessary in more energetic international waters.

Suggested Citation

  • Yue Hong & Mikael Eriksson & Cecilia Boström & Rafael Waters, 2016. "Impact of Generator Stroke Length on Energy Production for a Direct Drive Wave Energy Converter," Energies, MDPI, vol. 9(9), pages 1-12, September.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:9:p:730-:d:77831
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/9/730/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/9/730/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hong, Yue & Waters, Rafael & Boström, Cecilia & Eriksson, Mikael & Engström, Jens & Leijon, Mats, 2014. "Review on electrical control strategies for wave energy converting systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 329-342.
    2. Waters, Rafael & Engström, Jens & Isberg, Jan & Leijon, Mats, 2009. "Wave climate off the Swedish west coast," Renewable Energy, Elsevier, vol. 34(6), pages 1600-1606.
    3. Ekström, Rickard & Kurupath, Venugopalan & Svensson, Olle & Leijon, Mats, 2013. "Measurement system design and implementation for grid-connected marine substation," Renewable Energy, Elsevier, vol. 55(C), pages 338-346.
    4. Castellucci, Valeria & Waters, Rafael & Eriksson, Markus & Leijon, Mats, 2013. "Tidal effect compensation system for point absorbing wave energy converters," Renewable Energy, Elsevier, vol. 51(C), pages 247-254.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Temiz, Irina & Leijon, Jennifer & Ekergård, Boel & Boström, Cecilia, 2018. "Economic aspects of latching control for a wave energy converter with a direct drive linear generator power take-off," Renewable Energy, Elsevier, vol. 128(PA), pages 57-67.
    2. Yetkin, Mertcan & Kalidoss, Sudharsan & Curtis, Frank E. & Snyder, Lawrence V. & Banerjee, Arindam, 2021. "Practical optimal control of a wave-energy converter in regular wave environments," Renewable Energy, Elsevier, vol. 171(C), pages 1382-1394.
    3. Vincenzo Piscopo & Guido Benassai & Renata Della Morte & Antonio Scamardella, 2018. "Cost-Based Design and Selection of Point Absorber Devices for the Mediterranean Sea," Energies, MDPI, vol. 11(4), pages 1-23, April.
    4. Martić, Ivana & Degiuli, Nastia & Grlj, Carlo Giorgio, 2024. "Scaling of wave energy converters for optimum performance in the Adriatic Sea," Energy, Elsevier, vol. 294(C).
    5. Rafael Guardeño & Agustín Consegliere & Manuel J. López, 2018. "A Study about Performance and Robustness of Model Predictive Controllers in a WEC System," Energies, MDPI, vol. 11(10), pages 1-23, October.
    6. Yue Hong & Irina Temiz & Jianfei Pan & Mikael Eriksson & Cecilia Boström, 2021. "Damping Studies on PMLG-Based Wave Energy Converter under Oceanic Wave Climates," Energies, MDPI, vol. 14(4), pages 1-21, February.
    7. Eelsalu, Maris & Montoya, Rubén D. & Aramburo, Darwin & Osorio, Andrés F. & Soomere, Tarmo, 2024. "Spatial and temporal variability of wave energy resource in the eastern Pacific from Panama to the Drake passage," Renewable Energy, Elsevier, vol. 224(C).
    8. Malin Göteman & Cameron McNatt & Marianna Giassi & Jens Engström & Jan Isberg, 2018. "Arrays of Point-Absorbing Wave Energy Converters in Short-Crested Irregular Waves," Energies, MDPI, vol. 11(4), pages 1-22, April.
    9. Piscopo, V. & Benassai, G. & Della Morte, R. & Scamardella, A., 2020. "Towards a unified formulation of time and frequency-domain models for point absorbers with single and double-body configuration," Renewable Energy, Elsevier, vol. 147(P1), pages 1525-1539.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brenda Rojas-Delgado & Monica Alonso & Hortensia Amaris & Juan de Santiago, 2019. "Wave Power Output Smoothing through the Use of a High-Speed Kinetic Buffer," Energies, MDPI, vol. 12(11), pages 1-28, June.
    2. Yue Hong & Mikael Eriksson & Cecilia Boström & Jianfei Pan & Yun Liu & Rafael Waters, 2020. "Damping Effect Coupled with the Internal Translator Mass of Linear Generator-Based Wave Energy Converters," Energies, MDPI, vol. 13(17), pages 1-14, August.
    3. Yue Hong & Irina Temiz & Jianfei Pan & Mikael Eriksson & Cecilia Boström, 2021. "Damping Studies on PMLG-Based Wave Energy Converter under Oceanic Wave Climates," Energies, MDPI, vol. 14(4), pages 1-21, February.
    4. Bódai, Tamás & Srinil, Narakorn, 2015. "Performance analysis and optimization of a box-hull wave energy converter concept," Renewable Energy, Elsevier, vol. 81(C), pages 551-565.
    5. Dina Silva & Eugen Rusu & Carlos Guedes Soares, 2013. "Evaluation of Various Technologies for Wave Energy Conversion in the Portuguese Nearshore," Energies, MDPI, vol. 6(3), pages 1-21, March.
    6. Mustapa, M.A. & Yaakob, O.B. & Ahmed, Yasser M. & Rheem, Chang-Kyu & Koh, K.K. & Adnan, Faizul Amri, 2017. "Wave energy device and breakwater integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 43-58.
    7. Kasiulis, Egidijus & Punys, Petras & Kofoed, Jens Peter, 2015. "Assessment of theoretical near-shore wave power potential along the Lithuanian coast of the Baltic Sea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 134-142.
    8. Pasquale Contestabile & Vincenzo Ferrante & Diego Vicinanza, 2015. "Wave Energy Resource along the Coast of Santa Catarina (Brazil)," Energies, MDPI, vol. 8(12), pages 1-25, December.
    9. Iglesias, G. & Carballo, R., 2010. "Wave energy and nearshore hot spots: The case of the SE Bay of Biscay," Renewable Energy, Elsevier, vol. 35(11), pages 2490-2500.
    10. Talan, Amogh & Rao, Amar & Sharma, Gagan Deep & Apostu, Simona-Andreea & Abbas, Shujaat, 2023. "Transition towards clean energy consumption in G7: Can financial sector, ICT and democracy help?," Resources Policy, Elsevier, vol. 82(C).
    11. Soomere, Tarmo & Eelsalu, Maris, 2014. "On the wave energy potential along the eastern Baltic Sea coast," Renewable Energy, Elsevier, vol. 71(C), pages 221-233.
    12. Venugopalan Kurupath & Rickard Ekström & Mats Leijon, 2013. "Optimal Constant DC Link Voltage Operation of a Wave Energy Converter," Energies, MDPI, vol. 6(4), pages 1-14, April.
    13. Wahyudie, A. & Jama, M.A. & Saeed, O. & Noura, H. & Assi, A. & Harib, K., 2015. "Robust and low computational cost controller for improving captured power in heaving wave energy converters," Renewable Energy, Elsevier, vol. 82(C), pages 114-124.
    14. Liberti, Luca & Carillo, Adriana & Sannino, Gianmaria, 2013. "Wave energy resource assessment in the Mediterranean, the Italian perspective," Renewable Energy, Elsevier, vol. 50(C), pages 938-949.
    15. Rusu, Liliana & Guedes Soares, C., 2012. "Wave energy assessments in the Azores islands," Renewable Energy, Elsevier, vol. 45(C), pages 183-196.
    16. Pasquale Contestabile & Enrico Di Lauro & Paolo Galli & Cesare Corselli & Diego Vicinanza, 2017. "Offshore Wind and Wave Energy Assessment around Malè and Magoodhoo Island (Maldives)," Sustainability, MDPI, vol. 9(4), pages 1-24, April.
    17. Liang, Bingchen & Fan, Fei & Liu, Fushun & Gao, Shanhong & Zuo, Hongyan, 2014. "22-Year wave energy hindcast for the China East Adjacent Seas," Renewable Energy, Elsevier, vol. 71(C), pages 200-207.
    18. Aydoğan, Burak & Ayat, Berna & Yüksel, Yalçın, 2013. "Black Sea wave energy atlas from 13 years hindcasted wave data," Renewable Energy, Elsevier, vol. 57(C), pages 436-447.
    19. Jinming Wu & Yingxue Yao & Dongke Sun & Zhonghua Ni & Malin Göteman, 2019. "Numerical and Experimental Study of the Solo Duck Wave Energy Converter," Energies, MDPI, vol. 12(10), pages 1-19, May.
    20. Kim, Gunwoo & Jeong, Weon Mu & Lee, Kwang Soo & Jun, Kicheon & Lee, Myung Eun, 2011. "Offshore and nearshore wave energy assessment around the Korean Peninsula," Energy, Elsevier, vol. 36(3), pages 1460-1469.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:9:p:730-:d:77831. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.