IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i8p572-d74686.html
   My bibliography  Save this article

A Run-Time Dynamic Reconfigurable Computing System for Lithium-Ion Battery Prognosis

Author

Listed:
  • Shaojun Wang

    (Department of Automatic Test and Control, Harbin Institute of Technology, Harbin 150080, China
    Department of Computing, Imperial College London, London SW7 2BZ, UK)

  • Datong Liu

    (Department of Automatic Test and Control, Harbin Institute of Technology, Harbin 150080, China)

  • Jianbao Zhou

    (Department of Automatic Test and Control, Harbin Institute of Technology, Harbin 150080, China)

  • Bin Zhang

    (College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA)

  • Yu Peng

    (Department of Automatic Test and Control, Harbin Institute of Technology, Harbin 150080, China)

Abstract

As safety and reliability critical components, lithium-ion batteries always require real-time diagnosis and prognosis. This often involves a large amount of computation, which makes diagnosis and prognosis difficult to implement, especially in embedded or mobile applications. To address this issue, this paper proposes a run-time Reconfigurable Computing (RC) system on Field Programmable Gate Array (FPGA) for Relevance Vector Machine (RVM) to realize real-time Remaining Useful Life (RUL) estimation. The system leverages state-of-the-art run-time dynamic partial reconfiguration technology and customized computing circuits to balance the hardware occupation and computing efficiency. Optimal hardware resource consumption is achieved by partitioning the RVM algorithm according to a multi-objective optimization. Moreover, pipelined and parallel computation circuits for kernel function and matrix inverse are proposed on FPGA to further accelerate the computation. Experimental results with two different battery data sets show that, without sacrificing the RUL prediction performance, the embedded RC platform significantly reduces the computation time and the requirement of hardware resources. This demonstrates that complex prognostic tasks can be implemented and deployed on the proposed system, and it can be extended to the embedded computation of other machine learning algorithms.

Suggested Citation

  • Shaojun Wang & Datong Liu & Jianbao Zhou & Bin Zhang & Yu Peng, 2016. "A Run-Time Dynamic Reconfigurable Computing System for Lithium-Ion Battery Prognosis," Energies, MDPI, vol. 9(8), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:572-:d:74686
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/8/572/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/8/572/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Renxin Xiao & Jiangwei Shen & Xiaoyu Li & Wensheng Yan & Erdong Pan & Zheng Chen, 2016. "Comparisons of Modeling and State of Charge Estimation for Lithium-Ion Battery Based on Fractional Order and Integral Order Methods," Energies, MDPI, vol. 9(3), pages 1-15, March.
    2. Datong Liu & Hong Wang & Yu Peng & Wei Xie & Haitao Liao, 2013. "Satellite Lithium-Ion Battery Remaining Cycle Life Prediction with Novel Indirect Health Indicator Extraction," Energies, MDPI, vol. 6(8), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vincenzo Conti & Leonardo Rundo & Giuseppe Dario Billeci & Carmelo Militello & Salvatore Vitabile, 2018. "Energy Efficiency Evaluation of Dynamic Partial Reconfiguration in Field Programmable Gate Arrays: An Experimental Case Study," Energies, MDPI, vol. 11(4), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming Cai & Weijie Chen & Xiaojun Tan, 2017. "Battery State-Of-Charge Estimation Based on a Dual Unscented Kalman Filter and Fractional Variable-Order Model," Energies, MDPI, vol. 10(10), pages 1-16, October.
    2. Ma, Guijun & Zhang, Yong & Cheng, Cheng & Zhou, Beitong & Hu, Pengchao & Yuan, Ye, 2019. "Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Jun Peng & Zhiyong Zheng & Xiaoyong Zhang & Kunyuan Deng & Kai Gao & Heng Li & Bin Chen & Yingze Yang & Zhiwu Huang, 2020. "A Data-Driven Method with Feature Enhancement and Adaptive Optimization for Lithium-Ion Battery Remaining Useful Life Prediction," Energies, MDPI, vol. 13(3), pages 1-20, February.
    4. Yao Ahoutou & Adrian Ilinca & Mohamad Issa, 2022. "Electrochemical Cells and Storage Technologies to Increase Renewable Energy Share in Cold Climate Conditions—A Critical Assessment," Energies, MDPI, vol. 15(4), pages 1-30, February.
    5. Cheng, Yujie & Song, Dengwei & Wang, Zhenya & Lu, Chen & Zerhouni, Noureddine, 2020. "An ensemble prognostic method for lithium-ion battery capacity estimation based on time-varying weight allocation," Applied Energy, Elsevier, vol. 266(C).
    6. Shengjin Tang & Chuanqiang Yu & Xue Wang & Xiaosong Guo & Xiaosheng Si, 2014. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on the Wiener Process with Measurement Error," Energies, MDPI, vol. 7(2), pages 1-28, January.
    7. Zheng Chen & Xiaoyu Li & Jiangwei Shen & Wensheng Yan & Renxin Xiao, 2016. "A Novel State of Charge Estimation Algorithm for Lithium-Ion Battery Packs of Electric Vehicles," Energies, MDPI, vol. 9(9), pages 1-15, September.
    8. Wei, Meng & Balaya, Palani & Ye, Min & Song, Ziyou, 2022. "Remaining useful life prediction for 18650 sodium-ion batteries based on incremental capacity analysis," Energy, Elsevier, vol. 261(PA).
    9. Muhammad Waseem & Jingyuan Huang & Chak-Nam Wong & C. K. M. Lee, 2023. "Data-Driven GWO-BRNN-Based SOH Estimation of Lithium-Ion Batteries in EVs for Their Prognostics and Health Management," Mathematics, MDPI, vol. 11(20), pages 1-27, October.
    10. Jiangbo Wang & Kai Liu & Toshiyuki Yamamoto, 2017. "Improving Electricity Consumption Estimation for Electric Vehicles Based on Sparse GPS Observations," Energies, MDPI, vol. 10(1), pages 1-12, January.
    11. Zhongwei Zhang & Dan Zhou & Neng Xiong & Qiao Zhu, 2021. "Non-Fragile H ∞ Nonlinear Observer for State of Charge Estimation of Lithium-Ion Battery Based on a Fractional-Order Model," Energies, MDPI, vol. 14(16), pages 1-17, August.
    12. Jinsong Yu & Baohua Mo & Diyin Tang & Jie Yang & Jiuqing Wan & Jingjing Liu, 2017. "Indirect State-of-Health Estimation for Lithium-Ion Batteries under Randomized Use," Energies, MDPI, vol. 10(12), pages 1-19, December.
    13. Yang Zhang & Bo Guo, 2015. "Online Capacity Estimation of Lithium-Ion Batteries Based on Novel Feature Extraction and Adaptive Multi-Kernel Relevance Vector Machine," Energies, MDPI, vol. 8(11), pages 1-19, November.
    14. Shuai Wang & Lingling Zhao & Xiaohong Su & Peijun Ma, 2014. "Prognostics of Lithium-Ion Batteries Based on Battery Performance Analysis and Flexible Support Vector Regression," Energies, MDPI, vol. 7(10), pages 1-17, October.
    15. Wei, Yupeng & Wu, Dazhong & Terpenny, Janis, 2021. "Learning the health index of complex systems using dynamic conditional variational autoencoders," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Kuo-Hsin Tseng & Jin-Wei Liang & Wunching Chang & Shyh-Chin Huang, 2015. "Regression Models Using Fully Discharged Voltage and Internal Resistance for State of Health Estimation of Lithium-Ion Batteries," Energies, MDPI, vol. 8(4), pages 1-19, April.
    17. Mu, Hao & Xiong, Rui & Zheng, Hongfei & Chang, Yuhua & Chen, Zeyu, 2017. "A novel fractional order model based state-of-charge estimation method for lithium-ion battery," Applied Energy, Elsevier, vol. 207(C), pages 384-393.
    18. Yu Peng & Yandong Hou & Yuchen Song & Jingyue Pang & Datong Liu, 2018. "Lithium-Ion Battery Prognostics with Hybrid Gaussian Process Function Regression," Energies, MDPI, vol. 11(6), pages 1-20, June.
    19. Zhao, Dao & Zhou, Zhijie & Tang, Shuaiwen & Cao, You & Wang, Jie & Zhang, Peng & Zhang, Yijun, 2022. "Online estimation of satellite lithium-ion battery capacity based on approximate belief rule base and hidden Markov model," Energy, Elsevier, vol. 256(C).
    20. Xin Lu & Hui Li & Jun Xu & Siyuan Chen & Ning Chen, 2018. "Rapid Estimation Method for State of Charge of Lithium-Ion Battery Based on Fractional Continual Variable Order Model," Energies, MDPI, vol. 11(4), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:572-:d:74686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.