IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i6p392-d70678.html
   My bibliography  Save this article

Model for Energy Analysis of Miscanthus Production and Transportation

Author

Listed:
  • Alessandro Sopegno

    (Department of Agriculture, Forestry and Food Science (DISAFA), University of Turin, Largo Braccini 2, Grugliasco 10095, Italy)

  • Efthymios Rodias

    (Department of Engineering, Faculty of Science and Technology, Aarhus University, Inge Lehmanss Gade 10, Aarhus 8000, Denmark)

  • Dionysis Bochtis

    (Department of Engineering, Faculty of Science and Technology, Aarhus University, Inge Lehmanss Gade 10, Aarhus 8000, Denmark)

  • Patrizia Busato

    (Department of Agriculture, Forestry and Food Science (DISAFA), University of Turin, Largo Braccini 2, Grugliasco 10095, Italy)

  • Remigio Berruto

    (Department of Agriculture, Forestry and Food Science (DISAFA), University of Turin, Largo Braccini 2, Grugliasco 10095, Italy)

  • Valter Boero

    (Department of Agriculture, Forestry and Food Science (DISAFA), University of Turin, Largo Braccini 2, Grugliasco 10095, Italy)

  • Claus Sørensen

    (Department of Engineering, Faculty of Science and Technology, Aarhus University, Inge Lehmanss Gade 10, Aarhus 8000, Denmark)

Abstract

A computational tool is developed for the estimation of the energy requirements of Miscanthus x giganteus on individual fields that includes a detailed analysis and account of the involved in-field and transport operations. The tool takes into account all the individual involved in-field and transport operations and provides a detailed analysis on the energy requirements of the components that contribute to the energy input. A basic scenario was implemented to demonstrate the capabilities of the tool. Specifically, the variability of the energy requirements as a function of field area and field-storage distance changes was shown. The field-storage distance highly affects the energy requirements resulting in a variation in the efficiency if energy (output/input ratio) from 15.8 up to 23.7 for the targeted cases. Not only the field-distance highly affects the energy requirements but also the biomass transportation system. Based on the presented example, different transportation systems adhering to the same configuration of the production system creates variation in the efficiency of energy (EoE) between 12.9 and 17.5. The presented tool provides individualized results that can be used for the processes of designing or evaluating a specific production system since the outcomes are not based on average norms.

Suggested Citation

  • Alessandro Sopegno & Efthymios Rodias & Dionysis Bochtis & Patrizia Busato & Remigio Berruto & Valter Boero & Claus Sørensen, 2016. "Model for Energy Analysis of Miscanthus Production and Transportation," Energies, MDPI, vol. 9(6), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:6:p:392-:d:70678
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/6/392/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/6/392/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lantian Ren & Kara Cafferty & Mohammad Roni & Jacob Jacobson & Guanghui Xie & Leslie Ovard & Christopher Wright, 2015. "Analyzing and Comparing Biomass Feedstock Supply Systems in China: Corn Stover and Sweet Sorghum Case Studies," Energies, MDPI, vol. 8(6), pages 1-21, June.
    2. Krystel K. Castillo-Villar & Hertwin Minor-Popocatl & Erin Webb, 2016. "Quantifying the Impact of Feedstock Quality on the Design of Bioenergy Supply Chain Networks," Energies, MDPI, vol. 9(3), pages 1-23, March.
    3. Poritosh Roy & Animesh Dutta & Bill Deen, 2015. "An Approach to Identify the Suitable Plant Location for Miscanthus -Based Ethanol Industry: A Case Study in Ontario, Canada," Energies, MDPI, vol. 8(9), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Efthymios Rodias & Remigio Berruto & Dionysis Bochtis & Alessandro Sopegno & Patrizia Busato, 2019. "Green, Yellow, and Woody Biomass Supply-Chain Management: A Review," Energies, MDPI, vol. 12(15), pages 1-22, August.
    2. Efthymios Rodias & Eirini Aivazidou & Charisios Achillas & Dimitrios Aidonis & Dionysis Bochtis, 2020. "Water-Energy-Nutrients Synergies in the Agrifood Sector: A Circular Economy Framework," Energies, MDPI, vol. 14(1), pages 1-17, December.
    3. Patrizia Busato & Alessandro Sopegno & Remigio Berruto & Dionysis Bochtis & Angela Calvo, 2017. "A Web-Based Tool for Energy Balance Estimation in Multiple-Crops Production Systems," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    4. Efthymios Rodias & Remigio Berruto & Dionysis Bochtis & Patrizia Busato & Alessandro Sopegno, 2017. "A Computational Tool for Comparative Energy Cost Analysis of Multiple-Crop Production Systems," Energies, MDPI, vol. 10(7), pages 1-15, June.
    5. Munyeowaji Mbikan & Tarik Al-Shemmeri, 2017. "Computational Model of a Biomass Driven Absorption Refrigeration System," Energies, MDPI, vol. 10(2), pages 1-15, February.
    6. Efthymios Rodias & Remigio Berruto & Patrizia Busato & Dionysis Bochtis & Claus Grøn Sørensen & Kun Zhou, 2017. "Energy Savings from Optimised In-Field Route Planning for Agricultural Machinery," Sustainability, MDPI, vol. 9(11), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Efthymios Rodias & Remigio Berruto & Dionysis Bochtis & Patrizia Busato & Alessandro Sopegno, 2017. "A Computational Tool for Comparative Energy Cost Analysis of Multiple-Crop Production Systems," Energies, MDPI, vol. 10(7), pages 1-15, June.
    2. Hernan Chavez & Krystel K. Castillo-Villar & Erin Webb, 2017. "Development of the IBSAL-SimMOpt Method for the Optimization of Quality in a Corn Stover Supply Chain," Energies, MDPI, vol. 10(8), pages 1-29, August.
    3. Espinoza Pérez, Andrea Teresa & Camargo, Mauricio & Narváez Rincón, Paulo César & Alfaro Marchant, Miguel, 2017. "Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 350-359.
    4. Shizhong Song & Pei Liu & Jing Xu & Linwei Ma & Chinhao Chong & Min He & Xianzheng Huang & Zheng Li & Weidou Ni, 2016. "An Economic and Policy Analysis of a District Heating System Using Corn Straw Densified Fuel: A Case Study in Nong’an County in Jilin Province, China," Energies, MDPI, vol. 10(1), pages 1-22, December.
    5. Marco Manzone & Fabrizio Gioelli & Paolo Balsari, 2017. "Kiwi Clear‐Cut: First Evaluation of Recovered Biomass for Energy Production," Energies, MDPI, vol. 10(11), pages 1-12, November.
    6. Mohammad S. Roni & Sandra D. Eksioglu & Kara G. Cafferty & Jacob J. Jacobson, 2017. "A multi-objective, hub-and-spoke model to design and manage biofuel supply chains," Annals of Operations Research, Springer, vol. 249(1), pages 351-380, February.
    7. Dong Jiang & Tian Ma & Fangyu Ding & Jingying Fu & Mengmeng Hao & Qian Wang & Shuai Chen, 2019. "Mapping Global Environmental Suitability for Sorghum bicolor (L.) Moench," Energies, MDPI, vol. 12(10), pages 1-11, May.
    8. Tamara Llano & Natalia Quijorna & Alberto Coz, 2017. "Detoxification of a Lignocellulosic Waste from a Pulp Mill to Enhance Its Fermentation Prospects," Energies, MDPI, vol. 10(3), pages 1-18, March.
    9. Kaiyan Luo & Xingping Zhang & Qinliang Tan, 2018. "A Co-Opetition Straw Supply Strategy Integrating Rural Official Organizations and Farmers’ Behavior in China," Energies, MDPI, vol. 11(10), pages 1-17, October.
    10. Christina Moulogianni & Thomas Bournaris, 2017. "Biomass Production from Crops Residues: Ranking of Agro-Energy Regions," Energies, MDPI, vol. 10(7), pages 1-12, July.
    11. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.
    12. Roy, Poritosh & Dutta, Animesh & Gallant, Jim, 2020. "Evaluation of the life cycle of hydrothermally carbonized biomass for energy and horticulture application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    13. Rui Wang & Yanyou Wu & Deke Xing & Hongtao Hang & Xiaolin Xie & Xiuqun Yang & Kaiyan Zhang & Sen Rao, 2017. "Biomass Production of Three Biofuel Energy Plants’ Use of a New Carbon Resource by Carbonic Anhydrase in Simulated Karst Soils: Mechanism and Capacity," Energies, MDPI, vol. 10(9), pages 1-14, September.
    14. Xiaolin Yang & Meng Li & Huihui Liu & Lantian Ren & Guanghui Xie, 2018. "Technical Feasibility and Comprehensive Sustainability Assessment of Sweet Sorghum for Bioethanol Production in China," Sustainability, MDPI, vol. 10(3), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:6:p:392-:d:70678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.