IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i10p843-d80846.html
   My bibliography  Save this article

Impact of Tidal Level Variations on Wave Energy Absorption at Wave Hub

Author

Listed:
  • Valeria Castellucci

    (Swedish Centre for Renewable Electric Energy Conversion, Division of Electricity, Ångström Lab., Lägerhyddsvägen 1, Uppsala University, Uppsala 75121, Sweden)

  • Mikael Eriksson

    (Swedish Centre for Renewable Electric Energy Conversion, Division of Electricity, Ångström Lab., Lägerhyddsvägen 1, Uppsala University, Uppsala 75121, Sweden)

  • Rafael Waters

    (Swedish Centre for Renewable Electric Energy Conversion, Division of Electricity, Ångström Lab., Lägerhyddsvägen 1, Uppsala University, Uppsala 75121, Sweden)

Abstract

The energy absorption of the wave energy converters (WEC) characterized by a limited stroke length —like the point absorbers developed at Uppsala University—depends on the sea level variation at the deployment site. In coastal areas characterized by high tidal ranges, the daily energy production of the generators is not optimal. The study presented in this paper quantifies the effects of the changing sea level at the Wave Hub test site, located at the south-west coast of England. This area is strongly affected by tides: the tidal height calculated as the difference between the Mean High Water Spring and the Mean Low Water Spring in 2014 was about 6.6 m. The results are obtained from a hydro-mechanic model that analyzes the behaviour of the point absorber at the Wave Hub, taking into account the sea state occurrence scatter diagram and the tidal time series at the site. It turns out that the impact of the tide decreases the energy absorption by 53%. For this reason, the need for a tidal compensation system to be included in the design of the WEC becomes compelling. The economic advantages are evaluated for different scenarios: the economic analysis proposed within the paper allows an educated guess to be made on the profits. The alternative of extending the stroke length of the WEC is investigated, and the gain in energy absorption is estimated.

Suggested Citation

  • Valeria Castellucci & Mikael Eriksson & Rafael Waters, 2016. "Impact of Tidal Level Variations on Wave Energy Absorption at Wave Hub," Energies, MDPI, vol. 9(10), pages 1-11, October.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:843-:d:80846
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/10/843/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/10/843/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Valeria Castellucci & Johan Abrahamsson & Tobias Kamf & Rafael Waters, 2015. "Nearshore Tests of the Tidal Compensation System for Point-Absorbing Wave Energy Converters," Energies, MDPI, vol. 8(4), pages 1-20, April.
    2. van Nieuwkoop, Joana C.C. & Smith, Helen C.M. & Smith, George H. & Johanning, Lars, 2013. "Wave resource assessment along the Cornish coast (UK) from a 23-year hindcast dataset validated against buoy measurements," Renewable Energy, Elsevier, vol. 58(C), pages 1-14.
    3. Ekström, Rickard & Ekergård, Boel & Leijon, Mats, 2015. "Electrical damping of linear generators for wave energy converters—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 116-128.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Temiz, Irina & Leijon, Jennifer & Ekergård, Boel & Boström, Cecilia, 2018. "Economic aspects of latching control for a wave energy converter with a direct drive linear generator power take-off," Renewable Energy, Elsevier, vol. 128(PA), pages 57-67.
    2. Jennifer Leijon & Jonathan Sjölund & Boel Ekergård & Cecilia Boström & Sandra Eriksson & Irina Temiz & Mats Leijon, 2017. "Study of an Altered Magnetic Circuit of a Permanent Magnet Linear Generator for Wave Power," Energies, MDPI, vol. 11(1), pages 1-13, December.
    3. Simon Thomas & Marianna Giassi & Malin Göteman & Martyn Hann & Edward Ransley & Jan Isberg & Jens Engström, 2018. "Performance of a Direct-Driven Wave Energy Point Absorber with High Inertia Rotatory Power Take-off," Energies, MDPI, vol. 11(9), pages 1-17, September.
    4. Mohd Nasir Ayob & Valeria Castellucci & Johan Abrahamsson & Rafael Waters, 2019. "A Remotely Controlled Sea Level Compensation System for Wave Energy Converters," Energies, MDPI, vol. 12(10), pages 1-16, May.
    5. Raju Ahamed & Kristoffer McKee & Ian Howard, 2022. "A Review of the Linear Generator Type of Wave Energy Converters’ Power Take-Off Systems," Sustainability, MDPI, vol. 14(16), pages 1-42, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco Francisco & Jennifer Leijon & Cecilia Boström & Jens Engström & Jan Sundberg, 2018. "Wave Power as Solution for Off-Grid Water Desalination Systems: Resource Characterization for Kilifi-Kenya," Energies, MDPI, vol. 11(4), pages 1-14, April.
    2. Fairley, I. & Smith, H.C.M. & Robertson, B. & Abusara, M. & Masters, I., 2017. "Spatio-temporal variation in wave power and implications for electricity supply," Renewable Energy, Elsevier, vol. 114(PA), pages 154-165.
    3. Morim, Joao & Cartwright, Nick & Hemer, Mark & Etemad-Shahidi, Amir & Strauss, Darrell, 2019. "Inter- and intra-annual variability of potential power production from wave energy converters," Energy, Elsevier, vol. 169(C), pages 1224-1241.
    4. Carpintero Moreno, Efrain & Stansby, Peter, 2019. "The 6-float wave energy converter M4: Ocean basin tests giving capture width, response and energy yield for several sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 307-318.
    5. O'Sullivan, Adrian C.M. & Lightbody, Gordon, 2017. "Co-design of a wave energy converter using constrained predictive control," Renewable Energy, Elsevier, vol. 102(PA), pages 142-156.
    6. Hiles, Clayton E. & Buckham, Bradley J. & Wild, Peter & Robertson, Bryson, 2014. "Wave energy resources near Hot Springs Cove, Canada," Renewable Energy, Elsevier, vol. 71(C), pages 598-608.
    7. García-Medina, Gabriel & Özkan-Haller, H. Tuba & Ruggiero, Peter, 2014. "Wave resource assessment in Oregon and southwest Washington, USA," Renewable Energy, Elsevier, vol. 64(C), pages 203-214.
    8. Sierra, J.P. & Martín, C. & Mösso, C. & Mestres, M. & Jebbad, R., 2016. "Wave energy potential along the Atlantic coast of Morocco," Renewable Energy, Elsevier, vol. 96(PA), pages 20-32.
    9. Mohd Nasir Ayob & Valeria Castellucci & Johan Abrahamsson & Rafael Waters, 2019. "A Remotely Controlled Sea Level Compensation System for Wave Energy Converters," Energies, MDPI, vol. 12(10), pages 1-16, May.
    10. Yue Hong & Mikael Eriksson & Cecilia Boström & Jianfei Pan & Yun Liu & Rafael Waters, 2020. "Damping Effect Coupled with the Internal Translator Mass of Linear Generator-Based Wave Energy Converters," Energies, MDPI, vol. 13(17), pages 1-14, August.
    11. Thies, Philipp R. & Johanning, Lars & Harnois, Violette & Smith, Helen C.M. & Parish, David N., 2014. "Mooring line fatigue damage evaluation for floating marine energy converters: Field measurements and prediction," Renewable Energy, Elsevier, vol. 63(C), pages 133-144.
    12. Morim, Joao & Cartwright, Nick & Etemad-Shahidi, Amir & Strauss, Darrell & Hemer, Mark, 2016. "Wave energy resource assessment along the Southeast coast of Australia on the basis of a 31-year hindcast," Applied Energy, Elsevier, vol. 184(C), pages 276-297.
    13. Vincenzo Piscopo & Guido Benassai & Renata Della Morte & Antonio Scamardella, 2018. "Cost-Based Design and Selection of Point Absorber Devices for the Mediterranean Sea," Energies, MDPI, vol. 11(4), pages 1-23, April.
    14. Valentina Vannucchi & Lorenzo Cappietti, 2016. "Wave Energy Assessment and Performance Estimation of State of the Art Wave Energy Converters in Italian Hotspots," Sustainability, MDPI, vol. 8(12), pages 1-21, December.
    15. Besio, G. & Mentaschi, L. & Mazzino, A., 2016. "Wave energy resource assessment in the Mediterranean Sea on the basis of a 35-year hindcast," Energy, Elsevier, vol. 94(C), pages 50-63.
    16. Coe, Ryan G. & Ahn, Seongho & Neary, Vincent S. & Kobos, Peter H. & Bacelli, Giorgio, 2021. "Maybe less is more: Considering capacity factor, saturation, variability, and filtering effects of wave energy devices," Applied Energy, Elsevier, vol. 291(C).
    17. Webb, A. & Waseda, T. & Kiyomatsu, K., 2020. "A high-resolution, long-term wave resource assessment of Japan with wave–current effects," Renewable Energy, Elsevier, vol. 161(C), pages 1341-1358.
    18. Marcos Blanco & Pablo Moreno-Torres & Marcos Lafoz & Dionisio Ramírez, 2015. "Design Parameters Analysis of Point Absorber WEC via an evolutionary-algorithm-based Dimensioning Tool," Energies, MDPI, vol. 8(10), pages 1-31, October.
    19. Ashton, I. & Van-Nieuwkoop-McCall, J.C.C. & Smith, H.C.M. & Johanning, L., 2014. "Spatial variability of waves within a marine energy site using in-situ measurements and a high resolution spectral wave model," Energy, Elsevier, vol. 66(C), pages 699-710.
    20. Liguo Wang & Jan Isberg, 2015. "Nonlinear Passive Control of a Wave Energy Converter Subject to Constraints in Irregular Waves," Energies, MDPI, vol. 8(7), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:843-:d:80846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.