IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i8p7690-7702d53273.html
   My bibliography  Save this article

Measurement of the Relative Free Radical Content of Insulating Oils of Petroleum Origin

Author

Listed:
  • Issouf Fofana

    (Canada Research Chair on Insulating Liquids and Mixed Dielectrics for Electrotechnology (ISOLIME), University of Quebec at Chicoutimi, 555 Boulevard de l'université, Chicoutimi, QC G7H 2B1, Canada)

  • John Sabau

    (Insoil Canada Ltd., 231 Hampshire Place NW, Calgary, AB T3A 4Y7, Canada)

  • Amidou Betie

    (Canada Research Chair on Insulating Liquids and Mixed Dielectrics for Electrotechnology (ISOLIME), University of Quebec at Chicoutimi, 555 Boulevard de l'université, Chicoutimi, QC G7H 2B1, Canada)

Abstract

Oil/paper insulation degradation in transformers involves chemical and physical changes in the materials. Some of the chemical reactions involve very reactive intermediates called free radicals. Free radicals play a major role in a wide variety of ageing processes. The detection of these reactive species in oil may, in principle, provide useful information for monitoring oil degradation. This manuscript details a laboratory technique, which determines the relative content of free radicals in insulating oils of petroleum origin by a spectrophotometric method. Free radicals may be formed in oils under operating or test conditions. The procedure enables the determination of the relative concentration of free radicals, which can act as the precursors of decay products such as charge carriers, oxidized molecules, as well as polymerization products. The technique involves using a reactive free radical reagent, 2,2-diphenyl-1-picrylhydrazyl (DPPH), added to oil to assess free radical concentration. This method is applicable to new, reclaimed, or used oils as well as naturally or artificially oxidized oil (the cause of aging can be chemical, physical, or electrical). In this contribution, free radicals were assessed following electrical discharge application in oil.

Suggested Citation

  • Issouf Fofana & John Sabau & Amidou Betie, 2015. "Measurement of the Relative Free Radical Content of Insulating Oils of Petroleum Origin," Energies, MDPI, vol. 8(8), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:7690-7702:d:53273
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/8/7690/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/8/7690/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yazid Hadjadj & Fethi Meghnefi & Issouf Fofana & Hassan Ezzaidi, 2013. "On the Feasibility of Using Poles Computed from Frequency Domain Spectroscopy to Assess Oil Impregnated Paper Insulation Conditions," Energies, MDPI, vol. 6(4), pages 1-17, April.
    2. Youyuan Wang & Senlian Gong & Stanislaw Grzybowski, 2011. "Reliability Evaluation Method for Oil–Paper Insulation in Power Transformers," Energies, MDPI, vol. 4(9), pages 1-14, September.
    3. Shangkun Deng & Akito Sakurai, 2014. "Crude Oil Spot Price Forecasting Based on Multiple Crude Oil Markets and Timeframes," Energies, MDPI, vol. 7(5), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janvier Sylvestre N’cho & Issouf Fofana & Yazid Hadjadj & Abderrahmane Beroual, 2016. "Review of Physicochemical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers," Energies, MDPI, vol. 9(5), pages 1-29, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lefeng Cheng & Tao Yu & Guoping Wang & Bo Yang & Lv Zhou, 2018. "Hot Spot Temperature and Grey Target Theory-Based Dynamic Modelling for Reliability Assessment of Transformer Oil-Paper Insulation Systems: A Practical Case Study," Energies, MDPI, vol. 11(1), pages 1-26, January.
    2. Hanbo Zheng & Jiefeng Liu & Yiyi Zhang & Yijie Ma & Yang Shen & Xiaochen Zhen & Zilai Chen, 2018. "Effectiveness Analysis and Temperature Effect Mechanism on Chemical and Electrical-Based Transformer Insulation Diagnostic Parameters Obtained from PDC Data," Energies, MDPI, vol. 11(1), pages 1-17, January.
    3. Hongyan Nie & Xinlao Wei & Yonghong Wang & Qingguo Chen, 2018. "A Study of Electrical Aging of the Turn-to-Turn Oil-Paper Insulation in Transformers with a Step-Stress Method," Energies, MDPI, vol. 11(12), pages 1-16, November.
    4. Ariannik, Mohamadreza & Razi-Kazemi, Ali A. & Lehtonen, Matti, 2020. "An approach on lifetime estimation of distribution transformers based on degree of polymerization," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    5. Jiake Fang & Hanbo Zheng & Jiefeng Liu & Junhui Zhao & Yiyi Zhang & Ke Wang, 2018. "A Transformer Fault Diagnosis Model Using an Optimal Hybrid Dissolved Gas Analysis Features Subset with Improved Social Group Optimization-Support Vector Machine Classifier," Energies, MDPI, vol. 11(8), pages 1-18, July.
    6. Giovanni Hernandez & Abner Ramirez, 2022. "Dielectric Response Model for Transformer Insulation Using Frequency Domain Spectroscopy and Vector Fitting," Energies, MDPI, vol. 15(7), pages 1-14, April.
    7. Feng Yang & Lin Du & Lijun Yang & Chao Wei & Youyuan Wang & Liman Ran & Peng He, 2018. "A Parameterization Approach for the Dielectric Response Model of Oil Paper Insulation Using FDS Measurements," Energies, MDPI, vol. 11(3), pages 1-17, March.
    8. Youyuan Wang & Kun Xiao & Bijun Chen & Yuanlong Li, 2015. "Study of the Impact of Initial Moisture Content in Oil Impregnated Insulation Paper on Thermal Aging Rate of Condenser Bushing," Energies, MDPI, vol. 8(12), pages 1-13, December.
    9. Yiyi Zhang & Jiefeng Liu & Hanbo Zheng & Hua Wei & Ruijin Liao, 2017. "Study on Quantitative Correlations between the Ageing Condition of Transformer Cellulose Insulation and the Large Time Constant Obtained from the Extended Debye Model," Energies, MDPI, vol. 10(11), pages 1-17, November.
    10. Guoqiang Xia & Guangning Wu & Bo Gao & Haojie Yin & Feibao Yang, 2017. "A New Method for Evaluating Moisture Content and Aging Degree of Transformer Oil-Paper Insulation Based on Frequency Domain Spectroscopy," Energies, MDPI, vol. 10(8), pages 1-15, August.
    11. Ghada Gmati & Ungarala Mohan Rao & Issouf Fofana & Patrick Picher & Oscar Arroyo-Fernàndez & Djamal Rebaine, 2023. "Bubbling Phenomena in Liquid-Filled Transformers: Background and Assessment," Energies, MDPI, vol. 16(9), pages 1-23, April.
    12. Jing Wu & Kun Li & Jing Sun & Li Xie, 2018. "A Novel Integrated Method to Diagnose Faults in Power Transformers," Energies, MDPI, vol. 11(11), pages 1-8, November.
    13. Lu-Tao Zhao & Li-Na Liu & Zi-Jie Wang & Ling-Yun He, 2019. "Forecasting Oil Price Volatility in the Era of Big Data: A Text Mining for VaR Approach," Sustainability, MDPI, vol. 11(14), pages 1-20, July.
    14. Josué M. Polanco-Martínez & Luis M. Abadie, 2016. "Analyzing Crude Oil Spot Price Dynamics versus Long Term Future Prices: A Wavelet Analysis Approach," Energies, MDPI, vol. 9(12), pages 1-19, December.
    15. Lefeng Cheng & Tao Yu, 2018. "Dissolved Gas Analysis Principle-Based Intelligent Approaches to Fault Diagnosis and Decision Making for Large Oil-Immersed Power Transformers: A Survey," Energies, MDPI, vol. 11(4), pages 1-69, April.
    16. Jiacheng Xie & Ming Dong & Boning Yu & Yizhuo Hu & Kaige Yang & Changjie Xia, 2020. "Physical Model for Frequency Domain Spectroscopy of Oil–Paper Insulation in a Wide Temperature Range by a Novel Analysis Approach," Energies, MDPI, vol. 13(17), pages 1-17, September.
    17. Sýkora, Miroslav & Marková, Jana & Diamantidis, Dimitris, 2018. "Bayesian network application for the risk assessment of existing energy production units," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 312-320.
    18. Issouf Fofana & Yazid Hadjadj, 2016. "Electrical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers," Energies, MDPI, vol. 9(9), pages 1-26, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:7690-7702:d:53273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.