IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i5p4572-4586d49895.html
   My bibliography  Save this article

Experimental Results of a DC Bus Voltage Level Control for a Load-Controlled Marine Current Energy Converter

Author

Listed:
  • Johan Forslund

    (Department of Engineering Sciences, Uppsala University, P.O. box 534, 751 21 Uppsala, Sweden)

  • Staffan Lundin

    (Department of Engineering Sciences, Uppsala University, P.O. box 534, 751 21 Uppsala, Sweden)

  • Karin Thomas

    (Department of Engineering Sciences, Uppsala University, P.O. box 534, 751 21 Uppsala, Sweden)

  • Mats Leijon

    (Department of Engineering Sciences, Uppsala University, P.O. box 534, 751 21 Uppsala, Sweden
    Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK)

Abstract

This paper investigates three load control methods for a marine current energy converter using a vertical axis current turbine (VACT) mounted on a permanent magnet synchronous generator (PMSG). The three cases are; a fixed AC load, a fixed pulse width modulated (PWM) DC load and DC bus voltage control of a DC load. Experimental results show that the DC bus voltage control reduces the variations of rotational speed by a factor of 3.5 at the cost of slightly increased losses in the generator and transmission lines. For all three cases, the tip speed ratio \(\lambda\) can be kept close to the expected \(\lambda_{opt}\). The power coefficient is estimated to be 0.36 at \(\lambda_{opt}\); however, for all three cases, the average extracted power was about \(\sim 19\)\%. A maximum power point tracking (MPPT) system, with or without water velocity measurement, could increase the average extracted power.

Suggested Citation

  • Johan Forslund & Staffan Lundin & Karin Thomas & Mats Leijon, 2015. "Experimental Results of a DC Bus Voltage Level Control for a Load-Controlled Marine Current Energy Converter," Energies, MDPI, vol. 8(5), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:5:p:4572-4586:d:49895
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/5/4572/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/5/4572/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hae Gwang Jeong & Ro Hak Seung & Kyo Beum Lee, 2012. "An Improved Maximum Power Point Tracking Method for Wind Power Systems," Energies, MDPI, vol. 5(5), pages 1-16, May.
    2. Abbes, Mohamed & Belhadj, Jamel & Ben Abdelghani Bennani, Afef, 2010. "Design and control of a direct drive wind turbine equipped with multilevel converters," Renewable Energy, Elsevier, vol. 35(5), pages 936-945.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jennifer Leijon & Johan Forslund & Karin Thomas & Cecilia Boström, 2018. "Marine Current Energy Converters to Power a Reverse Osmosis Desalination Plant," Energies, MDPI, vol. 11(11), pages 1-13, October.
    2. Wenbin Su & Hongbo Wei & Penghua Guo & Qiao Hu & Mengyuan Guo & Yuanjie Zhou & Dayu Zhang & Zhufeng Lei & Chaohui Wang, 2021. "Research on Hydraulic Conversion Technology of Small Ocean Current Turbines for Low-Flow Current Energy Generation," Energies, MDPI, vol. 14(20), pages 1-19, October.
    3. Johan Forslund & Anders Goude & Karin Thomas, 2018. "Validation of a Coupled Electrical and Hydrodynamic Simulation Model for a Vertical Axis Marine Current Energy Converter," Energies, MDPI, vol. 11(11), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Jianhu & Lin, Heyun & Feng, Yi & Zhu, Z.Q., 2014. "Control of a grid-connected direct-drive wind energy conversion system," Renewable Energy, Elsevier, vol. 66(C), pages 371-380.
    2. Phan, Dinh-Chung & Yamamoto, Shigeru, 2016. "Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking," Energy, Elsevier, vol. 111(C), pages 377-388.
    3. Emejeamara, F.C. & Tomlin, A.S. & Millward-Hopkins, J.T., 2015. "Urban wind: Characterisation of useful gust and energy capture," Renewable Energy, Elsevier, vol. 81(C), pages 162-172.
    4. Tania García-Sánchez & Arbinda Kumar Mishra & Elías Hurtado-Pérez & Rubén Puché-Panadero & Ana Fernández-Guillamón, 2020. "A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine," Energies, MDPI, vol. 13(21), pages 1-16, November.
    5. Hasan, Nor Shahida & Rosmin, Norzanah & Osman, Dygku. Asmanissa Awg. & Musta’amal@Jamal, Aede Hatib, 2017. "Reviews on multilevel converter and modulation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 163-174.
    6. Shoudao Huang & Yang Zhang & Zhikang Shuai, 2016. "Capacitor Voltage Ripple Suppression for Z-Source Wind Energy Conversion System," Energies, MDPI, vol. 9(1), pages 1-15, January.
    7. Héctor Zazo & Esteban Del Castillo & Jean François Reynaud & Ramon Leyva, 2012. "MPPT for Photovoltaic Modules via Newton-Like Extremum Seeking Control," Energies, MDPI, vol. 5(8), pages 1-15, July.
    8. Yeongsu Bak & June-Seok Lee & Kyo-Beum Lee, 2016. "Balanced Current Control Strategy for Current Source Rectifier Stage of Indirect Matrix Converter under Unbalanced Grid Voltage Conditions," Energies, MDPI, vol. 10(1), pages 1-18, December.
    9. Yeongsu Bak & Eunsil Lee & Kyo-Beum Lee, 2015. "Indirect Matrix Converter for Hybrid Electric Vehicle Application with Three-Phase and Single-Phase Outputs," Energies, MDPI, vol. 8(5), pages 1-18, April.
    10. Dinh-Chung Phan & Shigeru Yamamoto, 2015. "Maximum Energy Output of a DFIG Wind Turbine Using an Improved MPPT-Curve Method," Energies, MDPI, vol. 8(10), pages 1-19, October.
    11. Dargahi, Vahid & Sadigh, Arash Khoshkbar & Pahlavani, Mohammad Reza Alizadeh & Shoulaie, Abbas, 2012. "DC (direct current) voltage source reduction in stacked multicell converter based energy systems," Energy, Elsevier, vol. 46(1), pages 649-663.
    12. de Freitas, Tiara R.S. & Menegáz, Paulo J.M. & Simonetti, Domingos S.L., 2016. "Rectifier topologies for permanent magnet synchronous generator on wind energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1334-1344.
    13. Pouresmaeil, Edris & Gomis-Bellmunt, Oriol & Montesinos-Miracle, Daniel & Bergas-Jané, Joan, 2011. "Multilevel converters control for renewable energy integration to the power grid," Energy, Elsevier, vol. 36(2), pages 950-963.
    14. Melício, R. & Mendes, V.M.F. & Catalão, J.P.S., 2010. "Power converter topologies for wind energy conversion systems: Integrated modeling, control strategy and performance simulation," Renewable Energy, Elsevier, vol. 35(10), pages 2165-2174.
    15. Verne, Santiago A. & Valla, María I., 2012. "Direct connection of WECS system to the MV grid with multilevel converters," Renewable Energy, Elsevier, vol. 41(C), pages 336-344.
    16. Bo Li & Wenhu Tang & Kaishun Xiahou & Qinghua Wu, 2017. "Development of Novel Robust Regulator for Maximum Wind Energy Extraction Based upon Perturbation and Observation," Energies, MDPI, vol. 10(4), pages 1-21, April.
    17. Mahela, Om Prakash & Shaik, Abdul Gafoor, 2016. "Comprehensive overview of grid interfaced wind energy generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 260-281.
    18. Njiri, Jackson G. & Söffker, Dirk, 2016. "State-of-the-art in wind turbine control: Trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 377-393.
    19. Constantin Voloşencu, 2021. "A Comparative Analysis of Some Methods for Wind Turbine Maximum Power Point Tracking," Mathematics, MDPI, vol. 9(19), pages 1-33, September.
    20. Akour, Salih N. & Al-Heymari, Mohammed & Ahmed, Talha & Khalil, Kamel Ali, 2018. "Experimental and theoretical investigation of micro wind turbine for low wind speed regions," Renewable Energy, Elsevier, vol. 116(PA), pages 215-223.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:5:p:4572-4586:d:49895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.