IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i8p5425-5443d39505.html
   My bibliography  Save this article

Capacity Calculation of Shunt Active Power Filters for Electric Vehicle Charging Stations Based on Harmonic Parameter Estimation and Analytical Modeling

Author

Listed:
  • Niancheng Zhou

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Jiajia Wang

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Qianggang Wang

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Nengqiao Wei

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China)

  • Xiaoxuan Lou

    (State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China
    Department of Electrical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA)

Abstract

The influence of electric vehicle charging stations on power grid harmonics is becoming increasingly significant as their presence continues to grow. This paper studies the operational principles of the charging current in the continuous and discontinuous modes for a three-phase uncontrolled rectification charger with a passive power factor correction link, which is affected by the charging power. A parameter estimation method is proposed for the equivalent circuit of the charger by using the measured characteristic AC (Alternating Current) voltage and current data combined with the charging circuit constraints in the conduction process, and this method is verified using an experimental platform. The sensitivity of the current harmonics to the changes in the parameters is analyzed. An analytical harmonic model of the charging station is created by separating the chargers into groups by type. Then, the harmonic current amplification caused by the shunt active power filter is researched, and the analytical formula for the overload factor is derived to further correct the capacity of the shunt active power filter. Finally, this method is validated through a field test of a charging station.

Suggested Citation

  • Niancheng Zhou & Jiajia Wang & Qianggang Wang & Nengqiao Wei & Xiaoxuan Lou, 2014. "Capacity Calculation of Shunt Active Power Filters for Electric Vehicle Charging Stations Based on Harmonic Parameter Estimation and Analytical Modeling," Energies, MDPI, vol. 7(8), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:8:p:5425-5443:d:39505
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/8/5425/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/8/5425/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiuchun Jiang & Yan Bao & Le Yi Wang, 2014. "Topology of a Bidirectional Converter for Energy Interaction between Electric Vehicles and the Grid," Energies, MDPI, vol. 7(8), pages 1-37, July.
    2. Lucas, Alexandre & Neto, Rui Costa & Silva, Carla Alexandra, 2013. "Energy supply infrastructure LCA model for electric and hydrogen transportation systems," Energy, Elsevier, vol. 56(C), pages 70-80.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. N. Syed Nasir & J. J. Jamian & M. W. Mustafa, 2018. "Minimizing Harmonic Distortion Impact at Distribution System with Considering Large-Scale EV Load Behaviour Using Modified Lightning Search Algorithm and Pareto-Fuzzy Approach," Complexity, Hindawi, vol. 2018, pages 1-14, February.
    2. Muhammad Ammirrul Atiqi Mohd Zainuri & Mohd Amran Mohd Radzi & Azura Che Soh & Norman Mariun & Nasrudin Abd Rahim & Shahrooz Hajighorbani, 2016. "Fundamental Active Current Adaptive Linear Neural Networks for Photovoltaic Shunt Active Power Filters," Energies, MDPI, vol. 9(6), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenzheng Xu & Nelson Hon Lung Chan & Siu Wing Or & Siu Lau Ho & Ka Wing Chan, 2017. "A New Control Method for a Bi-Directional Phase-Shift-Controlled DC-DC Converter with an Extended Load Range," Energies, MDPI, vol. 10(10), pages 1-17, October.
    2. Shen, Jiayu, 2020. "An environmental supply chain network under uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    3. Ribau, João P. & Sousa, João M.C. & Silva, Carla M., 2015. "Reducing the carbon footprint of urban bus fleets using multi-objective optimization," Energy, Elsevier, vol. 93(P1), pages 1089-1104.
    4. Sergio Ignacio Serna-Garcés & Daniel Gonzalez Montoya & Carlos Andres Ramos-Paja, 2016. "Sliding-Mode Control of a Charger/Discharger DC/DC Converter for DC-Bus Regulation in Renewable Power Systems," Energies, MDPI, vol. 9(4), pages 1-27, March.
    5. Massimo Ceraolo & Valentina Consolo & Mauro Di Monaco & Giovanni Lutzemberger & Antonino Musolino & Rocco Rizzo & Giuseppe Tomasso, 2021. "Design and Realization of an Inductive Power Transfer for Shuttles in Automated Warehouses," Energies, MDPI, vol. 14(18), pages 1-20, September.
    6. Alexandre Lucas & Giuseppe Prettico & Marco Giacomo Flammini & Evangelos Kotsakis & Gianluca Fulli & Marcelo Masera, 2018. "Indicator-Based Methodology for Assessing EV Charging Infrastructure Using Exploratory Data Analysis," Energies, MDPI, vol. 11(7), pages 1-18, July.
    7. Weige Zhang & Di Zhang & Biqiang Mu & Le Yi Wang & Yan Bao & Jiuchun Jiang & Hugo Morais, 2017. "Decentralized Electric Vehicle Charging Strategies for Reduced Load Variation and Guaranteed Charge Completion in Regional Distribution Grids," Energies, MDPI, vol. 10(2), pages 1-19, January.
    8. Comodi, Gabriele & Bevilacqua, Maurizio & Caresana, Flavio & Paciarotti, Claudia & Pelagalli, Leonardo & Venella, Paola, 2016. "Life cycle assessment and energy-CO2-economic payback analyses of renewable domestic hot water systems with unglazed and glazed solar thermal panels," Applied Energy, Elsevier, vol. 164(C), pages 944-955.
    9. Marcelo Moya & Javier Martínez-Gómez & Esteban Urresta & Martín Cordovez-Dammer, 2022. "Feature Selection in Energy Consumption of Solar Catamaran INER 1 on Galapagos Island," Energies, MDPI, vol. 15(8), pages 1-17, April.
    10. Ganesh Mohan & Francis Assadian & Stefano Longo, 2013. "An Optimization Framework for Comparative Analysis of Multiple Vehicle Powertrains," Energies, MDPI, vol. 6(10), pages 1-31, October.
    11. Chih-Lung Shen & You-Sheng Shen & Cheng-Tao Tsai, 2017. "Isolated DC-DC Converter for Bidirectional Power Flow Controlling with Soft-Switching Feature and High Step-Up/Down Voltage Conversion," Energies, MDPI, vol. 10(3), pages 1-23, March.
    12. Vladislav Volnyi & Pavel Ilyushin & Konstantin Suslov & Sergey Filippov, 2023. "Approaches to Building AC and AC–DC Microgrids on Top of Existing Passive Distribution Networks," Energies, MDPI, vol. 16(15), pages 1-26, August.
    13. Gao-Yuan Hu & Xiaodong Li & Bo-Yue Luan, 2014. "A Generalized Approach for the Steady-State Analysis of Dual-Bridge Resonant Converters," Energies, MDPI, vol. 7(12), pages 1-21, November.
    14. Seyfettin Vadi & Ramazan Bayindir & Alperen Mustafa Colak & Eklas Hossain, 2019. "A Review on Communication Standards and Charging Topologies of V2G and V2H Operation Strategies," Energies, MDPI, vol. 12(19), pages 1-27, September.
    15. Martin Khzouz & Evangelos I. Gkanas & Jia Shao & Farooq Sher & Dmytro Beherskyi & Ahmad El-Kharouf & Mansour Al Qubeissi, 2020. "Life Cycle Costing Analysis: Tools and Applications for Determining Hydrogen Production Cost for Fuel Cell Vehicle Technology," Energies, MDPI, vol. 13(15), pages 1-19, July.
    16. Ying Fan & Weixia Zhu & Zhongbing Xue & Li Zhang & Zhixiang Zou, 2015. "A Multi-Function Conversion Technique for Vehicle-to-Grid Applications," Energies, MDPI, vol. 8(8), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:8:p:5425-5443:d:39505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.