IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i4p2573-2594d35347.html
   My bibliography  Save this article

Implications of Spatial Variability in Heat Flow for Geothermal Resource Evaluation in Large Foreland Basins: The Case of the Western Canada Sedimentary Basin

Author

Listed:
  • Simon Weides

    (Helmholtz Centre Potsdam GFZ—German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany)

  • Jacek Majorowicz

    (Department of Physics, University of Alberta, 11322-89 Ave., Edmonton, AB T6G 2G7, Canada)

Abstract

Heat flow and geothermal gradient of the sedimentary succession of the Western Canada Sedimentary Basin (WCSB) are mapped based on a large thermal database. Heat flow in the deep part of the basin varies from 30 mW/m 2 in the south to high 100 mW/m 2 in the north. As permeable strata are required for a successful geothermal application, the most important aquifers are discussed and evaluated. Regional temperature distribution within different aquifers is mapped for the first time, enabling a delineation of the most promising areas based on thermal field and aquifer properties. Results of previous regional studies on the geothermal potential of the WCSB are newly evaluated and discussed. In parts of the WCSB temperatures as high as 100–210 °C exist at depths of 3–5 km. Fluids from deep aquifers in these “hot” regions of the WCSB could be used in geothermal power plants to produce electricity. The geothermal resources of the shallower parts of the WCSB (>2 km) could be used for warm water provision (>50 °C) or district heating (>70 °C) in urban areas.

Suggested Citation

  • Simon Weides & Jacek Majorowicz, 2014. "Implications of Spatial Variability in Heat Flow for Geothermal Resource Evaluation in Large Foreland Basins: The Case of the Western Canada Sedimentary Basin," Energies, MDPI, vol. 7(4), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:4:p:2573-2594:d:35347
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/4/2573/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/4/2573/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Majorowicz, Jacek & Moore, Michal, 2014. "The feasibility and potential of geothermal heat in the deep Alberta foreland basin-Canada for CO2 savings," Renewable Energy, Elsevier, vol. 66(C), pages 541-549.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    2. Ewa Chomać-Pierzecka & Anna Sobczak & Dariusz Soboń, 2022. "The Potential and Development of the Geothermal Energy Market in Poland and the Baltic States—Selected Aspects," Energies, MDPI, vol. 15(11), pages 1-20, June.
    3. Yuan, Wanju & Chen, Zhuoheng & Grasby, Stephen E. & Little, Edward, 2021. "Closed-loop geothermal energy recovery from deep high enthalpy systems," Renewable Energy, Elsevier, vol. 177(C), pages 976-991.
    4. Schiffner, Daniel & Banks, Jonathan & Rabbani, Arif & Lefsrud, Lianne & Adamowicz, Wiktor, 2022. "Techno-economic assessment for heating cattle feed water with low-temperature geothermal energy: A case study from central Alberta, Canada," Renewable Energy, Elsevier, vol. 198(C), pages 1105-1120.
    5. Palmer-Wilson, K. & Banks, J. & Walsh, W. & Robertson, B., 2018. "Sedimentary basin geothermal favourability mapping and power generation assessments," Renewable Energy, Elsevier, vol. 127(C), pages 1087-1100.
    6. Jacek Majorowicz & Stephen E. Grasby, 2021. "Deep Geothermal Heating Potential for the Communities of the Western Canadian Sedimentary Basin," Energies, MDPI, vol. 14(3), pages 1-37, January.
    7. Kazemi, A.R. & Mahbaz, S.B. & Dehghani-Sanij, A.R. & Dusseault, M.B. & Fraser, R., 2019. "Performance Evaluation of an Enhanced Geothermal System in the Western Canada Sedimentary Basin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    8. Paul L. Younger, 2015. "Geothermal Energy: Delivering on the Global Potential," Energies, MDPI, vol. 8(10), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2022. "Utilizing geothermal energy from enhanced geothermal systems as a heat source for oil sands separation: A numerical evaluation," Energy, Elsevier, vol. 238(PA).
    2. Majorowicz, Jacek & Grasby, Stephen E., 2019. "Deep geothermal energy in Canadian sedimentary basins VS. Fossils based energy we try to replace – Exergy [KJ/KG] compared," Renewable Energy, Elsevier, vol. 141(C), pages 259-277.
    3. Moore, Kayla R. & Holländer, Hartmut M., 2020. "Feasibility of low-temperature geothermal systems: Considerations of thermal anomalies, geochemistry, and local assets," Applied Energy, Elsevier, vol. 275(C).
    4. Wang, Kai-Hua & Liu, Lu & Li, Xin & Oana-Ramona, Lobonţ, 2022. "Do oil price shocks drive unemployment? Evidence from Russia and Canada," Energy, Elsevier, vol. 253(C).
    5. Rahmanifard, Hamid & Plaksina, Tatyana, 2019. "Hybrid compressed air energy storage, wind and geothermal energy systems in Alberta: Feasibility simulation and economic assessment," Renewable Energy, Elsevier, vol. 143(C), pages 453-470.
    6. Schiffner, Daniel & Banks, Jonathan & Rabbani, Arif & Lefsrud, Lianne & Adamowicz, Wiktor, 2022. "Techno-economic assessment for heating cattle feed water with low-temperature geothermal energy: A case study from central Alberta, Canada," Renewable Energy, Elsevier, vol. 198(C), pages 1105-1120.
    7. Palmer-Wilson, K. & Banks, J. & Walsh, W. & Robertson, B., 2018. "Sedimentary basin geothermal favourability mapping and power generation assessments," Renewable Energy, Elsevier, vol. 127(C), pages 1087-1100.
    8. Jacek Majorowicz & Stephen E. Grasby, 2021. "Deep Geothermal Heating Potential for the Communities of the Western Canadian Sedimentary Basin," Energies, MDPI, vol. 14(3), pages 1-37, January.
    9. Jacek Majorowicz & Vasile Minea, 2015. "Geothermal Energy Potential in Low Enthalpy Areas as a Future Energy Resource: Identifying Feasible Targets, Quebec, Canada, Study Case," Resources, MDPI, vol. 4(3), pages 1-24, July.
    10. Lazzaroni, E. & Elsholkami, M. & Martelli, E. & Elkamel, A., 2017. "Design and simulation of a petcoke gasification polygeneration plant integrated with a bitumen extraction and upgrading facility and net energy analysis," Energy, Elsevier, vol. 141(C), pages 880-891.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:4:p:2573-2594:d:35347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.