IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i2p736-750d32894.html
   My bibliography  Save this article

Effects of Organic Loading Rate on the Performance of a Pressurized Anaerobic Filter in Two-Phase Anaerobic Digestion

Author

Listed:
  • Yuling Chen

    (State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, Garbenstraße 9, D-70599 Stuttgart, Germany)

  • Benjamin Rößler

    (State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, Garbenstraße 9, D-70599 Stuttgart, Germany)

  • Simon Zielonka

    (State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, Garbenstraße 9, D-70599 Stuttgart, Germany)

  • Anna-Maria Wonneberger

    (DVGW—Research Center at the Engler-Bunte-Institut, Karlsruhe Institute of Technology (KIT), Engler-Bunte-Ring 1, D-76131 Karlsruhe, Germany)

  • Andreas Lemmer

    (State Institute of Agricultural Engineering and Bioenergy, University of Hohenheim, Garbenstraße 9, D-70599 Stuttgart, Germany)

Abstract

The effect of organic loading rate (OLR) on a pressurized anaerobic filter was studied in a laboratory two-phase anaerobic digestion system. The anaerobic filter was operated successively at two working pressures (9 bar and 1.5 bar). The OLR (COD) for each pressure was increased from 5 to 17.5 kg·m −3 ·day −1 . The best performance of the reactor at 9 bar was observed at OLR (COD) of 12.5 kg·m −3 ·day −1 and hydraulic retention time (HRT) of 1.8 day, with specific biogas productivity (SBP) of 5.3 L·L −1 ·day −1 and COD degradation grade of 90.6%. At higher OLRs and shorter HRTs, the process became unstable. In contrast, there was no indication of digester failure during the experiments at 1.5 bar. The SBP peaked at OLR (COD) of 17.5 kg·m −3 ·day −1 with 8.2 L·L −1 ·day −1 , where COD degradation grade was 90.4%. The biogas collected from the reactor at 9 bar and 1.5 bar contained approximately 74.5% CH 4 and 66.2% CH 4 , respectively, regardless of OLR variation. At OLR (COD) of 5–12.5 kg·m −3 ·day −1 , the reactor at 9 bar had the same specific methane yield as at 1.5 bar, which was in the range of 0.31–0.32 L N ·g −1 COD. Raising the working pressure in the reactor resulted in an increase of methane content of the produced biogas. However, the low pH value (approximately 6.5) inside the reactor, induced by high CO 2 partial pressure seemed to limit the reactor performance at high OLRs and short HRT.

Suggested Citation

  • Yuling Chen & Benjamin Rößler & Simon Zielonka & Anna-Maria Wonneberger & Andreas Lemmer, 2014. "Effects of Organic Loading Rate on the Performance of a Pressurized Anaerobic Filter in Two-Phase Anaerobic Digestion," Energies, MDPI, vol. 7(2), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:2:p:736-750:d:32894
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/2/736/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/2/736/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Yuling & Rößler, Benjamin & Zielonka, Simon & Lemmer, Andreas & Wonneberger, Anna-Maria & Jungbluth, Thomas, 2014. "The pressure effects on two-phase anaerobic digestion," Applied Energy, Elsevier, vol. 116(C), pages 409-415.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frauke P. C. Müller & Gerd-Christian Maack & Wolfgang Buescher, 2017. "Effects of Biogas Substrate Recirculation on Methane Yield and Efficiency of a Liquid-Manure-Based Biogas Plant," Energies, MDPI, vol. 10(3), pages 1-11, March.
    2. Andreas Lemmer & Yuling Chen & Anna-Maria Wonneberger & Frank Graf & Rainer Reimert, 2015. "Integration of a Water Scrubbing Technique and Two-Stage Pressurized Anaerobic Digestion in One Process," Energies, MDPI, vol. 8(3), pages 1-18, March.
    3. Loganath, Radhakrishnan & Senophiyah-Mary, J., 2020. "Critical review on the necessity of bioelectricity generation from slaughterhouse industry waste and wastewater using different anaerobic digestion reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Renjun Ruan & Jiashun Cao & Chao Li & Di Zheng & Jingyang Luo, 2017. "The Influence of Micro-Oxygen Addition on Desulfurization Performance and Microbial Communities during Waste-Activated Sludge Digestion in a Rusty Scrap Iron-Loaded Anaerobic Digester," Energies, MDPI, vol. 10(2), pages 1-19, February.
    5. Constantin Stan & Gerardo Collaguazo & Constantin Streche & Tiberiu Apostol & Diana Mariana Cocarta, 2018. "Pilot-Scale Anaerobic Co-Digestion of the OFMSW: Improving Biogas Production and Startup," Sustainability, MDPI, vol. 10(6), pages 1-15, June.
    6. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    7. Lemmer, Andreas & Merkle, Wolfgang & Baer, Katharina & Graf, Frank, 2017. "Effects of high-pressure anaerobic digestion up to 30 bar on pH-value, production kinetics and specific methane yield," Energy, Elsevier, vol. 138(C), pages 659-667.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    2. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    3. Collins, B.A. & Birzer, C.H. & Harris, P.W. & Kidd, S.P. & McCabe, B.K. & Medwell, P.R., 2023. "Two-phase anaerobic digestion in leach bed reactors coupled to anaerobic filters: A review and the potential of biochar filters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    4. Begum, Sameena & Ahuja, Shruti & Anupoju, Gangagni Rao & Kuruti, Kranti & Juntupally, Sudharshan & Gandu, Bharath & Ahuja, D.K., 2017. "Process intensification with inline pre and post processing mechanism for valorization of poultry litter through high rate biomethanation technology: A full scale experience," Renewable Energy, Elsevier, vol. 114(PB), pages 428-436.
    5. Lemmer, Andreas & Krümpel, Johannes, 2017. "Demand-driven biogas production in anaerobic filters," Applied Energy, Elsevier, vol. 185(P1), pages 885-894.
    6. Andreas Lemmer & Yuling Chen & Anna-Maria Wonneberger & Frank Graf & Rainer Reimert, 2015. "Integration of a Water Scrubbing Technique and Two-Stage Pressurized Anaerobic Digestion in One Process," Energies, MDPI, vol. 8(3), pages 1-18, March.
    7. Lemmer, Andreas & Merkle, Wolfgang & Baer, Katharina & Graf, Frank, 2017. "Effects of high-pressure anaerobic digestion up to 30 bar on pH-value, production kinetics and specific methane yield," Energy, Elsevier, vol. 138(C), pages 659-667.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:2:p:736-750:d:32894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.