IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2341-d1648830.html
   My bibliography  Save this article

Pyrolysis Characterization of Simulated Radioactive Solid Waste: Pyrolysis Behavior, Kinetics, and Product Distribution

Author

Listed:
  • Zhigang Wei

    (Hainan Nuclear Power Co., Ltd., Changjiang 572700, China)

  • Lulu Dong

    (State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China)

  • Wei Wang

    (Hainan Nuclear Power Co., Ltd., Changjiang 572700, China)

  • Pan Ding

    (Hainan Nuclear Power Co., Ltd., Changjiang 572700, China)

  • Wenqian Jiang

    (State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China)

  • Chi Zuo

    (Hainan Nuclear Power Co., Ltd., Changjiang 572700, China)

  • Lei Li

    (Southwestern Institute of Physics, Chengdu 610041, China)

  • Minghui Tang

    (State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
    Qingshanhu Energy Research Center, Zhejiang University, 1699 Dayuan Road, Qingshanhu Science and Technology City, Hangzhou 311305, China)

Abstract

The disposal of low-level and intermediate-level radioactive solid waste has aroused widespread concern. In this work, the pyrolysis characterizations of simulated radioactive solid waste, cotton gloves (CG), stain removal cloths (SRC), plastic bags (PB), shoe covers (SC), and ion exchange resins (IER), were analyzed using thermogravimetric analysis, Thermogravimetric–Fourier Transform Infrared Spectrometry–Mass Spectrometry (TG-FTIR-MS) and Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). The main mass loss stages of CG, SRC, PB, SC, and IER were 240–500 °C, 210–500 °C, 400–550 °C, 180–610 °C, and 25–700 °C, respectively. The average activation energies calculated by three iso-conversional methods were 184.09–211.46 kJ/mol, 172.33–180.85 kJ/mol, 264.63–268.01 kJ/mol, 150.49–184.36 kJ/mol, and 150.72–151.66 kJ/mol, respectively. Pyrolysis of CG and SRC mainly produced CO 2 and oxygenated compounds. SC generated large amounts of HCl during pyrolysis. Combined with rapid pyrolysis analysis, it was shown that CG and SRC mainly produced carbohydrates, aliphatic hydrocarbons, and aromatics. The pyrolysis products of SC mainly consisted of aliphatic hydrocarbons, aromatics, and acids. The pyrolysis products of PB were mainly olefins and alcohols. IER produced large amounts of aromatics during rapid pyrolysis. Specifically, the pyrolysis of IER generated some SO 2 . This work provides a theoretical basis and data support for the treatment of mixed combustible radioactive waste.

Suggested Citation

  • Zhigang Wei & Lulu Dong & Wei Wang & Pan Ding & Wenqian Jiang & Chi Zuo & Lei Li & Minghui Tang, 2025. "Pyrolysis Characterization of Simulated Radioactive Solid Waste: Pyrolysis Behavior, Kinetics, and Product Distribution," Energies, MDPI, vol. 18(9), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2341-:d:1648830
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2341/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2341/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bassyouni, Mohamed & Nasser, Reem & El-Bagoury, Moataz & Shaker, Islam & Attia, Attia M. & Elhenawy, Yasser & Aboelela, Dina, 2025. "Integrating medical plastic waste pyrolysis and circular economy for environmental sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    2. Huang, Xiankun & Yin, Hongchao & Zhang, Hu & Mei, Ning & Mu, Lin, 2022. "Pyrolysis characteristics, gas products, volatiles, and thermo–kinetics of industrial lignin via TG/DTG–FTIR/MS and in–situ Py–PI–TOF/MS," Energy, Elsevier, vol. 259(C).
    3. Jiang, Chunlong & Zhou, Wenliang & Bi, Haobo & Ni, Zhanshi & Sun, Hao & Lin, Qizhao, 2022. "Co-pyrolysis of coal slime and cattle manure by TG–FTIR–MS and artificial neural network modeling: Pyrolysis behavior, kinetics, gas emission characteristics," Energy, Elsevier, vol. 247(C).
    4. Zhang, Qinglin & Dor, Liran & Fenigshtein, Dikla & Yang, Weihong & Blasiak, Wlodzmierz, 2012. "Gasification of municipal solid waste in the Plasma Gasification Melting process," Applied Energy, Elsevier, vol. 90(1), pages 106-112.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viktória Zsinka & Bálint Levente Tarcsay & Norbert Miskolczi, 2024. "Determination of Kinetic and Thermodynamic Parameters of Biomass Gasification with TG-FTIR and Regression Model Fitting," Energies, MDPI, vol. 17(8), pages 1-15, April.
    2. Hu, Lin & Xu, Mei-Ling & Wei, Xian-Yong & Yu, Changlin & Wu, Jingcheng & Wang, Haiyong & Liu, Tianlong, 2024. "Effect of ethanolysis on the structure evolution, pyrolysis kinetics, and volatile products of waste poplar sawdust," Energy, Elsevier, vol. 305(C).
    3. Kumar, Aman & Singh, Ekta & Mishra, Rahul & Lo, Shang Lien & Kumar, Sunil, 2023. "Global trends in municipal solid waste treatment technologies through the lens of sustainable energy development opportunity," Energy, Elsevier, vol. 275(C).
    4. Monteiro, Eliseu & Ismail, Tamer M. & Ramos, Ana & Abd El-Salam, M. & Brito, Paulo & Rouboa, Abel, 2018. "Experimental and modeling studies of Portuguese peach stone gasification on an autothermal bubbling fluidized bed pilot plant," Energy, Elsevier, vol. 142(C), pages 862-877.
    5. Fan, Yongsheng & Qin, Changsheng & Zhao, Keyu & Xiong, Yonglian & Shi, Yunxi, 2025. "Conversion of lignin with polystyrene into high-value aromatics through co-pyrolysis and post-plasma refining," Energy, Elsevier, vol. 318(C).
    6. Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
    7. Mollahosseini, Arash & Hosseini, Seyed Amid & Jabbari, Mostafa & Figoli, Alberto & Rahimpour, Ahmad, 2017. "Renewable energy management and market in Iran: A holistic review on current state and future demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 774-788.
    8. Rutberg, Philip G. & Kuznetsov, Vadim A. & Popov, Victor E. & Popov, Sergey D. & Surov, Alexander V. & Subbotin, Dmitry I. & Bratsev, Alexander N., 2015. "Conversion of methane by CO2+H2O+CH4 plasma," Applied Energy, Elsevier, vol. 148(C), pages 159-168.
    9. Ming Zhang & Jie Ma & Baogen Su & Guangdong Wen & Qiwei Yang & Qilong Ren, 2017. "Pyrolysis of Polyolefins Using Rotating Arc Plasma Technology for Production of Acetylene," Energies, MDPI, vol. 10(4), pages 1-13, April.
    10. Khalil, Munawar & Berawi, Mohammed Ali & Heryanto, Rudi & Rizalie, Akhmad, 2019. "Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 323-331.
    11. Casas Ledón, Yannay & González, Patricia & Concha, Scarlett & Zaror, Claudio A. & Arteaga-Pérez, Luis E., 2016. "Exergoeconomic valuation of a waste-based integrated combined cycle (WICC) for heat and power production," Energy, Elsevier, vol. 114(C), pages 239-252.
    12. Ramos, Ana & Rouboa, Abel, 2022. "Life cycle thinking of plasma gasification as a waste-to-energy tool: Review on environmental, economic and social aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    13. Paul Thomas & Nirmala Soren, 2020. "An overview of municipal solid waste-to-energy application in Indian scenario," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 575-592, February.
    14. Zhang, Yuming & Yu, Deping & Li, Wangliang & Gao, Shiqiu & Xu, Guangwen & Zhou, Huaqun & Chen, Jing, 2013. "Fundamental study of cracking gasification process for comprehensive utilization of vacuum residue," Applied Energy, Elsevier, vol. 112(C), pages 1318-1325.
    15. Ni, Zhanshi & Bi, Haobo & Jiang, Chunlong & Sun, Hao & Zhou, Wenliang & Qiu, Zhicong & He, Liqun & Lin, Qizhao, 2022. "Research on the co-pyrolysis of coal slime and lignin based on the combination of TG-FTIR, artificial neural network, and principal component analysis," Energy, Elsevier, vol. 261(PA).
    16. Hou, Fei & Zhong, Xiaoxing & Zanoni, Marco A.B. & Rashwan, Tarek L. & Torero, José L., 2024. "Multi-step scheme and thermal effects of coal smouldering under various oxygen-limited conditions," Energy, Elsevier, vol. 299(C).
    17. Ghulamullah Maitlo & Imran Ali & Kashif Hussain Mangi & Safdar Ali & Hubdar Ali Maitlo & Imran Nazir Unar & Abdul Majeed Pirzada, 2022. "Thermochemical Conversion of Biomass for Syngas Production: Current Status and Future Trends," Sustainability, MDPI, vol. 14(5), pages 1-30, February.
    18. Qi, Huini & Li, Fashe & Wang, Shuang & Sui, Meng & Lu, Fengju, 2024. "Pyrolysis and co-pyrolysis of cattle manure, rape straw, and their blend: Physicochemical characterization, kinetic triplets, reaction mechanism, and thermodynamic analysis," Energy, Elsevier, vol. 292(C).
    19. Shie, Je-Lueng & Chen, Li-Xun & Lin, Kae-Long & Chang, Ching-Yuan, 2014. "Plasmatron gasification of biomass lignocellulosic waste materials derived from municipal solid waste," Energy, Elsevier, vol. 66(C), pages 82-89.
    20. Zeng, Yongfu & Liu, Zuohua & Hu, Erfeng & Yu, Jianglong & Xiong, Qingang & Tian, Yishui & Li, Shuai, 2024. "Insight into impact of co-pyrolysis process parameters on cross-interaction of volatiles between furfural residue and coal via rapid infrared heating," Energy, Elsevier, vol. 309(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2341-:d:1648830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.