IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2191-d1642217.html
   My bibliography  Save this article

Cross-Seasonal Storage of Flue Gas Waste Heat from Power Plants Based on Soil Heat Storage Using Buried Pipes: Geotechnical Thermal Response Experiment

Author

Listed:
  • Fan Yang

    (Huadian Electric Power Research Institute Co., Ltd. (CHDER), Hangzhou 310030, China)

  • Ming Liu

    (School of Energy and Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Yu Shen

    (Huadian Electric Power Research Institute Co., Ltd. (CHDER), Hangzhou 310030, China)

  • Lijun Zheng

    (Huadian Electric Power Research Institute Co., Ltd. (CHDER), Hangzhou 310030, China)

  • Xinyue Fang

    (Huadian Electric Power Research Institute Co., Ltd. (CHDER), Hangzhou 310030, China)

  • Siming Ma

    (Huadian Electric Power Research Institute Co., Ltd. (CHDER), Hangzhou 310030, China)

Abstract

A large amount of low-grade waste heat (flue gas waste heat) cannot be fully utilized in thermal power plants in non-heating seasons; therefore, this study combines cross-seasonal heat storage technology with the cross-seasonal storage of low-grade waste heat in power plants. We propose a cross-seasonal underground heat storage and gas turbine co-generation coupling system to recover low-grade waste heat and large-scale cross-seasonal space–time migration and utilization. The basic law of soil heat storage and release was elucidated through a geotechnical thermal response experiment. The results show that the initial average temperature of the rock and soil mass within a depth range of 0–300 m in the study area was 16.7 °C, λ was 1.97 W/(m∙K), C v was 2655 kJ/(m 3 ∙K), and R was 0.353 (m∙K)/W. An increase in the operating share decreases unit heat transfer per linear meter of buried pipe heat exchanger. The heat release per unit linear meter increases with the average temperature of the circulating medium in the heat release mode. Similarly, the heat absorption per unit linear meter increases with the rock and soil temperature in the heat absorption mode.

Suggested Citation

  • Fan Yang & Ming Liu & Yu Shen & Lijun Zheng & Xinyue Fang & Siming Ma, 2025. "Cross-Seasonal Storage of Flue Gas Waste Heat from Power Plants Based on Soil Heat Storage Using Buried Pipes: Geotechnical Thermal Response Experiment," Energies, MDPI, vol. 18(9), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2191-:d:1642217
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2191/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2191/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hesaraki, Arefeh & Holmberg, Sture & Haghighat, Fariborz, 2015. "Seasonal thermal energy storage with heat pumps and low temperatures in building projects—A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1199-1213.
    2. Lundh, M. & Dalenbäck, J.-O., 2008. "Swedish solar heated residential area with seasonal storage in rock: Initial evaluation," Renewable Energy, Elsevier, vol. 33(4), pages 703-711.
    3. Reed, A.L. & Novelli, A.P. & Doran, K.L. & Ge, S. & Lu, N. & McCartney, J.S., 2018. "Solar district heating with underground thermal energy storage: Pathways to commercial viability in North America," Renewable Energy, Elsevier, vol. 126(C), pages 1-13.
    4. Giordano, N. & Comina, C. & Mandrone, G. & Cagni, A., 2016. "Borehole thermal energy storage (BTES). First results from the injection phase of a living lab in Torino (NW Italy)," Renewable Energy, Elsevier, vol. 86(C), pages 993-1008.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dahash, Abdulrahman & Ochs, Fabian & Janetti, Michele Bianchi & Streicher, Wolfgang, 2019. "Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems," Applied Energy, Elsevier, vol. 239(C), pages 296-315.
    2. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2018. "Seasonal thermal energy storage system for cold climate zones: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 38-49.
    3. Emil Nilsson & Patrik Rohdin, 2019. "Empirical Validation and Numerical Predictions of an Industrial Borehole Thermal Energy Storage System," Energies, MDPI, vol. 12(12), pages 1-20, June.
    4. Rotta Loria, Alessandro F., 2021. "The thermal energy storage potential of underground tunnels used as heat exchangers," Renewable Energy, Elsevier, vol. 176(C), pages 214-227.
    5. Ekmekci, Ece & Ozturk, Z. Fatih & Sisman, Altug, 2023. "Collective behavior of boreholes and its optimization to maximize BTES performance," Applied Energy, Elsevier, vol. 343(C).
    6. Fong, Matthew & Alzoubi, Mahmoud A. & Kurnia, Jundika C. & Sasmito, Agus P., 2019. "On the performance of ground coupled seasonal thermal energy storage for heating and cooling: A Canadian context," Applied Energy, Elsevier, vol. 250(C), pages 593-604.
    7. Guo, Fang & Zhu, Xiaoyue & Zhang, Junyue & Yang, Xudong, 2020. "Large-scale living laboratory of seasonal borehole thermal energy storage system for urban district heating," Applied Energy, Elsevier, vol. 264(C).
    8. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    9. Guo, Fang & Zhu, Xiaoyue & Li, Pengchao & Yang, Xudong, 2022. "Low-grade industrial waste heat utilization in urban district heating: Simulation-based performance assessment of a seasonal thermal energy storage system," Energy, Elsevier, vol. 239(PE).
    10. Yang, Tianrun & Liu, Wen & Kramer, Gert Jan & Sun, Qie, 2021. "Seasonal thermal energy storage: A techno-economic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    11. Sadeghi, Habibollah & Jalali, Ramin & Singh, Rao Martand, 2024. "A review of borehole thermal energy storage and its integration into district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    12. Rad, Farzin M. & Fung, Alan S., 2016. "Solar community heating and cooling system with borehole thermal energy storage – Review of systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1550-1561.
    13. Nilsson, Emil & Rohdin, Patrik, 2019. "Performance evaluation of an industrial borehole thermal energy storage (BTES) project – Experiences from the first seven years of operation," Renewable Energy, Elsevier, vol. 143(C), pages 1022-1034.
    14. Zhu, Li & Chen, Sarula & Yang, Yang & Sun, Yong, 2019. "Transient heat transfer performance of a vertical double U-tube borehole heat exchanger under different operation conditions," Renewable Energy, Elsevier, vol. 131(C), pages 494-505.
    15. Tordrup, K.W. & Poulsen, S.E. & Bjørn, H., 2017. "An improved method for upscaling borehole thermal energy storage using inverse finite element modelling," Renewable Energy, Elsevier, vol. 105(C), pages 13-21.
    16. Rapantova, Nada & Pospisil, Pavel & Koziorek, Jiri & Vojcinak, Petr & Grycz, David & Rozehnal, Zdenek, 2016. "Optimisation of experimental operation of borehole thermal energy storage," Applied Energy, Elsevier, vol. 181(C), pages 464-476.
    17. Paiho, Satu & Hoang, Ha & Hukkalainen, Mari, 2017. "Energy and emission analyses of solar assisted local energy solutions with seasonal heat storage in a Finnish case district," Renewable Energy, Elsevier, vol. 107(C), pages 147-155.
    18. Ushamah, Hafiz Muhammad & Ahmed, Naveed & Elfeky, K.E. & Mahmood, Mariam & Qaisrani, Mumtaz A. & Waqas, Adeel & Zhang, Qian, 2022. "Techno-economic analysis of a hybrid district heating with borehole thermal storage for various solar collectors and climate zones in Pakistan," Renewable Energy, Elsevier, vol. 199(C), pages 1639-1656.
    19. Zhu, Li & Chen, Sarula & Yang, Yang & Tian, Wei & Sun, Yong & Lyu, Mian, 2019. "Global sensitivity analysis on borehole thermal energy storage performances under intermittent operation mode in the first charging phase," Renewable Energy, Elsevier, vol. 143(C), pages 183-198.
    20. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2191-:d:1642217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.