IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1597-d1618526.html
   My bibliography  Save this article

A Novel FDIA Model for Virtual Power Plant Cyber–Physical Systems Based on Network Topology and DG Outputs

Author

Listed:
  • Shuo Wu

    (College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China)

  • Junhao Gong

    (College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China)

  • Shiqu Xiao

    (School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China)

  • Jiajia Yang

    (College of Science and Engineering, James Cook University, Townsville 4811, Australia)

  • Xiangjing Su

    (Offshore Wind Power Research Institute, Shanghai University of Electric Power, Shanghai 200090, China)

Abstract

Virtual power plant (VPP) is a critical platform for modern distribution systems with distributed generators (DGs). However, its cybersecurity is susceptible to cyber-attacks such as false data injection attacks (FDIAs). The impacts of FDIAs on VPP-distribution cyber–physical power systems have not been thoroughly investigated in the literature. This study concentrates on the distribution–VPP joint system and designs a new FDIA framework, topology-distributed-generator attack (TDA), that manipulates power network topology and DG outputs. An attack vector is designed carrying incorrect topology, falsified DG outputs, and tampered power flow information that can bypass the existing bad data detection and topology error identification, misleading the decision-making in the control center. Additionally, TDA models are formulated to optimize attack vectors based on objectives of attack investment, VPP economic loss, and operational security. A hybrid solution framework is then proposed for the optimization problem above, where the corresponding submodules realize the bad data detection, topology error identification, and optimal dispatching in the optimal attack vector. The effectiveness and superiority of the proposal are numerically verified on a 62-node cyber–physical system. Key findings highlight that VPP-integrated distribution systems are more vulnerable under low-level renewable energy penetration and the urgent need for enhancing backup power supplies to mitigate such threats.

Suggested Citation

  • Shuo Wu & Junhao Gong & Shiqu Xiao & Jiajia Yang & Xiangjing Su, 2025. "A Novel FDIA Model for Virtual Power Plant Cyber–Physical Systems Based on Network Topology and DG Outputs," Energies, MDPI, vol. 18(7), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1597-:d:1618526
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1597/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1597/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hui, Hongxun & Ding, Yi & Shi, Qingxin & Li, Fangxing & Song, Yonghua & Yan, Jinyue, 2020. "5G network-based Internet of Things for demand response in smart grid: A survey on application potential," Applied Energy, Elsevier, vol. 257(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Liya & Hui, Hongxun & Wang, Sheng & Song, Yonghua, 2024. "Coordinated optimization of power-communication coupling networks for dispatching large-scale flexible loads to provide operating reserve," Applied Energy, Elsevier, vol. 359(C).
    2. Turki Alsuwian & Aiman Shahid Butt & Arslan Ahmed Amin, 2022. "Smart Grid Cyber Security Enhancement: Challenges and Solutions—A Review," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
    3. Jeddi, Babak & Mishra, Yateendra & Ledwich, Gerard, 2021. "Distributed load scheduling in residential neighborhoods for coordinated operation of multiple home energy management systems," Applied Energy, Elsevier, vol. 300(C).
    4. Mehar Ullah & Daniel Gutierrez-Rojas & Eero Inkeri & Tero Tynjälä & Pedro H. J. Nardelli, 2022. "Operation of Power-to-X-Related Processes Based on Advanced Data-Driven Methods: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
    5. Sun, Mingyi & Zhao, Xia & Tan, Hong & Li, Xinyi, 2022. "Coordinated operation of the integrated electricity-water distribution system and water-cooled 5G base stations," Energy, Elsevier, vol. 238(PC).
    6. Xiao, Jucheng & He, Guangyu & Fan, Shuai & Zhang, Siyuan & Wu, Qing & Li, Zuyi, 2020. "Decentralized transfer of contingency reserve: Framework and methodology," Applied Energy, Elsevier, vol. 278(C).
    7. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    8. Kong, Xiangyu & Sun, Fangyuan & Huo, Xianxu & Li, Xue & Shen, Yu, 2020. "Hierarchical optimal scheduling method of heat-electricity integrated energy system based on Power Internet of Things," Energy, Elsevier, vol. 210(C).
    9. Naser Hossein Motlagh & Mahsa Mohammadrezaei & Julian Hunt & Behnam Zakeri, 2020. "Internet of Things (IoT) and the Energy Sector," Energies, MDPI, vol. 13(2), pages 1-27, January.
    10. Ahmad, Tanveer & Huanxin, Chen & Zhang, Dongdong & Zhang, Hongcai, 2020. "Smart energy forecasting strategy with four machine learning models for climate-sensitive and non-climate sensitive conditions," Energy, Elsevier, vol. 198(C).
    11. Zhuang, Weichao & Li (Eben), Shengbo & Zhang, Xiaowu & Kum, Dongsuk & Song, Ziyou & Yin, Guodong & Ju, Fei, 2020. "A survey of powertrain configuration studies on hybrid electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    12. Lyu, Wenjing & Liu, Jin, 2021. "Soft skills, hard skills: What matters most? Evidence from job postings," Applied Energy, Elsevier, vol. 300(C).
    13. Zeng, Bo & Zhang, Weixiang & Hu, Pinduan & Sun, Jing & Gong, Dunwei, 2023. "Synergetic renewable generation allocation and 5G base station placement for decarbonizing development of power distribution system: A multi-objective interval evolutionary optimization approach," Applied Energy, Elsevier, vol. 351(C).
    14. Matthew Boeding & Paul Scalise & Michael Hempel & Hamid Sharif & Juan Lopez, 2024. "Toward Wireless Smart Grid Communications: An Evaluation of Protocol Latencies in an Open-Source 5G Testbed," Energies, MDPI, vol. 17(2), pages 1-18, January.
    15. Lilia Tightiz & Hyosik Yang & Mohammad Jalil Piran, 2020. "A Survey on Enhanced Smart Micro-Grid Management System with Modern Wireless Technology Contribution," Energies, MDPI, vol. 13(9), pages 1-21, May.
    16. Arman Goudarzi & Farzad Ghayoor & Muhammad Waseem & Shah Fahad & Issa Traore, 2022. "A Survey on IoT-Enabled Smart Grids: Emerging, Applications, Challenges, and Outlook," Energies, MDPI, vol. 15(19), pages 1-32, September.
    17. Hui, Hongxun & Ding, Yi & Song, Yonghua, 2020. "Adaptive time-delay control of flexible loads in power systems facing accidental outages," Applied Energy, Elsevier, vol. 275(C).
    18. Cambini, Carlo & Congiu, Raffaele & Jamasb, Tooraj & Llorca, Manuel & Soroush, Golnoush, 2020. "Energy Systems Integration: Implications for public policy," Energy Policy, Elsevier, vol. 143(C).
    19. Stracqualursi, Erika & Rosato, Antonello & Di Lorenzo, Gianfranco & Panella, Massimo & Araneo, Rodolfo, 2023. "Systematic review of energy theft practices and autonomous detection through artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    20. Chen, Lin & Wang, Jianxiao & Wu, Zhaoyuan & Li, Gengyin & Zhou, Ming & Li, Peng & Zhang, Yihan, 2021. "Communication reliability-restricted energy sharing strategy in active distribution networks," Applied Energy, Elsevier, vol. 282(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1597-:d:1618526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.