IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i6p1371-d1609640.html
   My bibliography  Save this article

An Adaptive Energy Management Strategy for Off-Road Hybrid Tracked Vehicles

Author

Listed:
  • Lijin Han

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Wenhui Shi

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Ningkang Yang

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

Abstract

Conventional energy management strategies based on reinforcement learning often fail to achieve their intended performance when applied to driving conditions that significantly deviate from their training conditions. Therefore, the conventional reinforcement-learning-based strategy is not suitable for complex off-road conditions. This research suggests an energy management strategy for hybrid tracked vehicles operating in off-road conditions that is based on adaptive reinforcement learning. Power demand is described using a Markov chain model that is updated online in a recursive way. The technique updates the MC model and recalculates the reinforcement learning algorithm using the intrinsic matrix norm (IMN) as a criteria. According to the simulation results, the suggested method can increase the adaptability of energy management based on the reinforcement learning strategy in off-road conditions, as evidenced by the 7.66% reduction in equivalent fuel consumption when compared with the conventional Q-learning based energy management strategy.

Suggested Citation

  • Lijin Han & Wenhui Shi & Ningkang Yang, 2025. "An Adaptive Energy Management Strategy for Off-Road Hybrid Tracked Vehicles," Energies, MDPI, vol. 18(6), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1371-:d:1609640
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/6/1371/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/6/1371/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Wei & Luo, Junlin & Zou, Tiangang & Liu, Yin & Yuan, Shihua & Xiao, Bingqing, 2022. "Systematic design and power management of a novel parallel hybrid electric powertrain for heavy-duty vehicles," Energy, Elsevier, vol. 253(C).
    2. Lu, Ziwang & Tian, He & sun, Yiwen & Li, Runfeng & Tian, Guangyu, 2023. "Neural network energy management strategy with optimal input features for plug-in hybrid electric vehicles," Energy, Elsevier, vol. 285(C).
    3. Xu, Bin & Rathod, Dhruvang & Zhang, Darui & Yebi, Adamu & Zhang, Xueyu & Li, Xiaoya & Filipi, Zoran, 2020. "Parametric study on reinforcement learning optimized energy management strategy for a hybrid electric vehicle," Applied Energy, Elsevier, vol. 259(C).
    4. Liu, Teng & Wang, Bo & Yang, Chenglang, 2018. "Online Markov Chain-based energy management for a hybrid tracked vehicle with speedy Q-learning," Energy, Elsevier, vol. 160(C), pages 544-555.
    5. Teng Liu & Yuan Zou & Dexing Liu & Fengchun Sun, 2015. "Reinforcement Learning–Based Energy Management Strategy for a Hybrid Electric Tracked Vehicle," Energies, MDPI, vol. 8(7), pages 1-18, July.
    6. Jinquan, Guo & Hongwen, He & Jianwei, Li & Qingwu, Liu, 2021. "Real-time energy management of fuel cell hybrid electric buses: Fuel cell engines friendly intersection speed planning," Energy, Elsevier, vol. 226(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
    2. Dong, Peng & Zhao, Junwei & Liu, Xuewu & Wu, Jian & Xu, Xiangyang & Liu, Yanfang & Wang, Shuhan & Guo, Wei, 2022. "Practical application of energy management strategy for hybrid electric vehicles based on intelligent and connected technologies: Development stages, challenges, and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    3. Liu, Teng & Tan, Wenhao & Tang, Xiaolin & Zhang, Jinwei & Xing, Yang & Cao, Dongpu, 2021. "Driving conditions-driven energy management strategies for hybrid electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Matteo Acquarone & Claudio Maino & Daniela Misul & Ezio Spessa & Antonio Mastropietro & Luca Sorrentino & Enrico Busto, 2023. "Influence of the Reward Function on the Selection of Reinforcement Learning Agents for Hybrid Electric Vehicles Real-Time Control," Energies, MDPI, vol. 16(6), pages 1-22, March.
    5. Yang, Ningkang & Han, Lijin & Xiang, Changle & Liu, Hui & Li, Xunmin, 2021. "An indirect reinforcement learning based real-time energy management strategy via high-order Markov Chain model for a hybrid electric vehicle," Energy, Elsevier, vol. 236(C).
    6. Du, Guodong & Zou, Yuan & Zhang, Xudong & Kong, Zehui & Wu, Jinlong & He, Dingbo, 2019. "Intelligent energy management for hybrid electric tracked vehicles using online reinforcement learning," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Mingliang Bai & Wenjiang Yang & Dongbin Song & Marek Kosuda & Stanislav Szabo & Pavol Lipovsky & Afshar Kasaei, 2020. "Research on Energy Management of Hybrid Unmanned Aerial Vehicles to Improve Energy-Saving and Emission Reduction Performance," IJERPH, MDPI, vol. 17(8), pages 1-24, April.
    8. Han, Lijin & Yang, Ke & Ma, Tian & Yang, Ningkang & Liu, Hui & Guo, Lingxiong, 2022. "Battery life constrained real-time energy management strategy for hybrid electric vehicles based on reinforcement learning," Energy, Elsevier, vol. 259(C).
    9. Shi, Dehua & Liu, Sheng & Cai, Yingfeng & Wang, Shaohua & Li, Haoran & Chen, Long, 2021. "Pontryagin’s minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information," Applied Energy, Elsevier, vol. 286(C).
    10. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    11. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    12. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    13. Du, Guodong & Zou, Yuan & Zhang, Xudong & Liu, Teng & Wu, Jinlong & He, Dingbo, 2020. "Deep reinforcement learning based energy management for a hybrid electric vehicle," Energy, Elsevier, vol. 201(C).
    14. Chen, Zheng & Hu, Hengjie & Wu, Yitao & Zhang, Yuanjian & Li, Guang & Liu, Yonggang, 2020. "Stochastic model predictive control for energy management of power-split plug-in hybrid electric vehicles based on reinforcement learning," Energy, Elsevier, vol. 211(C).
    15. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    16. Li, Wei & Lu, Can, 2019. "The multiple effectiveness of state natural gas consumption constraint policies for achieving sustainable development targets in China," Applied Energy, Elsevier, vol. 235(C), pages 685-698.
    17. Zhang, Bo & Zhang, Jiangyan & Shen, Tielong, 2022. "Optimal control design for comfortable-driving of hybrid electric vehicles in acceleration mode," Applied Energy, Elsevier, vol. 305(C).
    18. Han, Lijin & You, Congwen & Yang, Ningkang & Liu, Hui & Chen, Ke & Xiang, Changle, 2024. "Adaptive real-time energy management strategy using heuristic search for off-road hybrid electric vehicles," Energy, Elsevier, vol. 304(C).
    19. Zhiwen Zhang & Jie Tang & Jiyuan Zhang & Tianci Zhang, 2024. "Research on Energy Hierarchical Management and Optimal Control of Compound Power Electric Vehicle," Energies, MDPI, vol. 17(6), pages 1-22, March.
    20. Zhou, Jianhao & Liu, Jun & Xue, Yuan & Liao, Yuhui, 2022. "Total travel costs minimization strategy of a dual-stack fuel cell logistics truck enhanced with artificial potential field and deep reinforcement learning," Energy, Elsevier, vol. 239(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:6:p:1371-:d:1609640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.