IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1158-d1600620.html
   My bibliography  Save this article

Wind Turbine Fault Diagnosis with Imbalanced SCADA Data Using Generative Adversarial Networks

Author

Listed:
  • Hong Wang

    (School of Physics and Electronic Engineering, Hebei Minzu Normal University, Chengde 067000, China)

  • Taikun Li

    (School of Physics and Electronic Engineering, Hebei Minzu Normal University, Chengde 067000, China)

  • Mingyang Xie

    (HBIS Company Limited Chengde Branch, Chengde 067000, China)

  • Wenfang Tian

    (School of Physics and Electronic Engineering, Hebei Minzu Normal University, Chengde 067000, China)

  • Wei Han

    (School of Physics and Electronic Engineering, Hebei Minzu Normal University, Chengde 067000, China)

Abstract

Wind turbine fault diagnostics is essential for enhancing turbine performance and lowering maintenance expenses. Supervisory control and data acquisition (SCADA) systems have been extensively recognized as a feasible technology for the realization of wind turbine fault diagnosis tasks due to their capacity to generate vast volumes of operation data. However, wind turbines generally operate normally, and fault data are rare or even impossible to collect. This makes the SCADA data distribution imbalanced, with significantly more normal data than abnormal data, resulting in a decrease in the performance of existing fault diagnosis techniques. This article presents an innovative deep learning-based fault diagnosis method to solve the SCADA data imbalance issue. First, a data generation module centered on generative adversarial networks is designed to create a balanced dataset. Specifically, the long short-term memory network that can handle time series data well is used in the generator network to learn the temporal correlations from SCADA data and thus generate samples with temporal dependencies. Meanwhile, the convolutional neural network (CNN), which has powerful feature learning and representation capabilities, is employed in the discriminator network to automatically capture data features and achieve sample authenticity discrimination. Then, another CNN is trained to perform fault classification using the augmented balanced dataset. The proposed approach is verified utilizing actual SCADA data derived from a wind farm. The comparative experiments show the presented approach is effective in diagnosing wind turbine faults.

Suggested Citation

  • Hong Wang & Taikun Li & Mingyang Xie & Wenfang Tian & Wei Han, 2025. "Wind Turbine Fault Diagnosis with Imbalanced SCADA Data Using Generative Adversarial Networks," Energies, MDPI, vol. 18(5), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1158-:d:1600620
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1158/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1158/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pang, Yanhua & He, Qun & Jiang, Guoqian & Xie, Ping, 2020. "Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 161(C), pages 510-524.
    2. Guo, Zhen & Pu, Ziqiang & Du, Wenliao & Wang, Hongcao & Li, Chuan, 2022. "Improved adversarial learning for fault feature generation of wind turbine gearbox," Renewable Energy, Elsevier, vol. 185(C), pages 255-266.
    3. Rahimilarki, Reihane & Gao, Zhiwei & Jin, Nanlin & Zhang, Aihua, 2022. "Convolutional neural network fault classification based on time-series analysis for benchmark wind turbine machine," Renewable Energy, Elsevier, vol. 185(C), pages 916-931.
    4. Li, Yanting & Liu, Shujun & Shu, Lianjie, 2019. "Wind turbine fault diagnosis based on Gaussian process classifiers applied to operational data," Renewable Energy, Elsevier, vol. 134(C), pages 357-366.
    5. Lijun Zhang & Kai Liu & Yufeng Wang & Zachary Bosire Omariba, 2018. "Ice Detection Model of Wind Turbine Blades Based on Random Forest Classifier," Energies, MDPI, vol. 11(10), pages 1-15, September.
    6. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function," Renewable Energy, Elsevier, vol. 181(C), pages 59-70.
    7. Yi, Cancan & Yu, Zhaohong & Lv, Yong & Xiao, Han, 2020. "Reassigned second-order Synchrosqueezing Transform and its application to wind turbine fault diagnosis," Renewable Energy, Elsevier, vol. 161(C), pages 736-749.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2023. "A multi-learner neural network approach to wind turbine fault diagnosis with imbalanced data," Renewable Energy, Elsevier, vol. 208(C), pages 420-430.
    2. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    3. Richmond, M. & Sobey, A. & Pandit, R. & Kolios, A., 2020. "Stochastic assessment of aerodynamics within offshore wind farms based on machine-learning," Renewable Energy, Elsevier, vol. 161(C), pages 650-661.
    4. Wenjie Wang & Yu Xue & Chengkuan He & Yongnian Zhao, 2022. "Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades," Energies, MDPI, vol. 15(15), pages 1-31, August.
    5. Arturo Y. Jaen-Cuellar & David A. Elvira-Ortiz & Roque A. Osornio-Rios & Jose A. Antonino-Daviu, 2022. "Advances in Fault Condition Monitoring for Solar Photovoltaic and Wind Turbine Energy Generation: A Review," Energies, MDPI, vol. 15(15), pages 1-36, July.
    6. Kumarasamy Palanimuthu & Ganesh Mayilsamy & Ameerkhan Abdul Basheer & Seong-Ryong Lee & Dongran Song & Young Hoon Joo, 2022. "A Review of Recent Aerodynamic Power Extraction Challenges in Coordinated Pitch, Yaw, and Torque Control of Large-Scale Wind Turbine Systems," Energies, MDPI, vol. 15(21), pages 1-27, November.
    7. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    8. Zhu, Yunyi & Xie, Bin & Wang, Anqi & Qian, Zheng, 2025. "Wind turbine fault detection and identification via self-attention-based dynamic graph representation learning and variable-level normalizing flow," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    9. Ye, Feng & Ezzat, Ahmed Aziz, 2024. "Icing detection and prediction for wind turbines using multivariate sensor data and machine learning," Renewable Energy, Elsevier, vol. 231(C).
    10. Alessandro Murgia & Robbert Verbeke & Elena Tsiporkova & Ludovico Terzi & Davide Astolfi, 2023. "Discussion on the Suitability of SCADA-Based Condition Monitoring for Wind Turbine Fault Diagnosis through Temperature Data Analysis," Energies, MDPI, vol. 16(2), pages 1-20, January.
    11. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. Xiaobo Liu & Haifei Ma & Yibing Liu, 2022. "A Novel Transfer Learning Method Based on Conditional Variational Generative Adversarial Networks for Fault Diagnosis of Wind Turbine Gearboxes under Variable Working Conditions," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    13. Huifan Zeng & Juchuan Dai & Chengming Zuo & Huanguo Chen & Mimi Li & Fan Zhang, 2022. "Correlation Investigation of Wind Turbine Multiple Operating Parameters Based on SCADA Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
    14. Wang, Zhenya & Yao, Ligang & Cai, Yongwu & Zhang, Jun, 2020. "Mahalanobis semi-supervised mapping and beetle antennae search based support vector machine for wind turbine rolling bearings fault diagnosis," Renewable Energy, Elsevier, vol. 155(C), pages 1312-1327.
    15. Wang, Zixuan & Qin, Bo & Sun, Haiyue & Zhang, Jian & Butala, Mark D. & Demartino, Cristoforo & Peng, Peng & Wang, Hongwei, 2023. "An imbalanced semi-supervised wind turbine blade icing detection method based on contrastive learning," Renewable Energy, Elsevier, vol. 212(C), pages 251-262.
    16. Xu, Qifa & Fan, Zhenhua & Jia, Weiyin & Jiang, Cuixia, 2020. "Fault detection of wind turbines via multivariate process monitoring based on vine copulas," Renewable Energy, Elsevier, vol. 161(C), pages 939-955.
    17. Ivan Kabardin & Sergey Dvoynishnikov & Maxim Gordienko & Sergey Kakaulin & Vadim Ledovsky & Grigoriy Gusev & Vladislav Zuev & Valery Okulov, 2021. "Optical Methods for Measuring Icing of Wind Turbine Blades," Energies, MDPI, vol. 14(20), pages 1-14, October.
    18. Tang, Yaochi & Chang, Yunchi & Li, Kuohao, 2023. "Applications of K-nearest neighbor algorithm in intelligent diagnosis of wind turbine blades damage," Renewable Energy, Elsevier, vol. 212(C), pages 855-864.
    19. Kong, Yun & Han, Qinkai & Chu, Fulei & Qin, Yechen & Dong, Mingming, 2023. "Spectral ensemble sparse representation classification approach for super-robust health diagnostics of wind turbine planetary gearbox," Renewable Energy, Elsevier, vol. 219(P1).
    20. He, Yaoyao & Zhu, Chuang & An, Xueli, 2023. "A trend-based method for the prediction of offshore wind power ramp," Renewable Energy, Elsevier, vol. 209(C), pages 248-261.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1158-:d:1600620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.