IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i1p147-d1558774.html
   My bibliography  Save this article

Doubly Fed Induction Machine Models for Integration into Grid Management Software for Improved Post Fault Response Calculation Accuracy—A Short Review

Author

Listed:
  • Andrija Mitrovic

    (Department for Power, Electronics, and Telecommunications Engineering, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia)

  • Luka Strezoski

    (Department for Power, Electronics, and Telecommunications Engineering, Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
    DerMag Consulting International, 21000 Novi Sad, Serbia
    Institute for Smart, Secure and Connected Systems (ISSACS), Case Western Reserve University, Cleveland, OH 44106, USA)

  • Kenneth A. Loparo

    (Institute for Smart, Secure and Connected Systems (ISSACS), Case Western Reserve University, Cleveland, OH 44106, USA)

Abstract

With the escalating proliferation of wind power plants, the imperative focus on system robustness and stability intensifies. Doubly fed induction machines (DFIMs) are extensively employed in land-based wind power plants due to their performance advantages. While the stator windings are directly connected to the power system, the rotor windings are connected via power converters, making these units vulnerable to voltage disturbances. During faults, voltage drops at the stator terminals lead to elevated voltages and currents on the rotor side due to electromagnetic coupling between stator and rotor, potentially damaging rotor insulation and costly power electronics. Historically, wind power plants employing DFIMs were disconnected from the grid during faults—an unsatisfactory solution given the burgeoning number of these installations. Consequently, grid operators and IEEE standard 2800 mandate fault ride-through (FRT) capabilities to maintain system stability during disturbances. This paper provides a short review of the existing techniques for protecting DFIMs during faults, focusing on both passive and active protection methods. Additionally, a simple calculation is presented to compare two different protection strategies, illustrating the differences in their effectiveness. The review emphasizes the necessity for developing models that represent all protection methods for DFIMs, due to the clear differences in the results obtained.

Suggested Citation

  • Andrija Mitrovic & Luka Strezoski & Kenneth A. Loparo, 2025. "Doubly Fed Induction Machine Models for Integration into Grid Management Software for Improved Post Fault Response Calculation Accuracy—A Short Review," Energies, MDPI, vol. 18(1), pages 1-22, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:1:p:147-:d:1558774
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/1/147/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/1/147/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Anca D. & Michalke, Gabriele, 2007. "Fault ride-through capability of DFIG wind turbines," Renewable Energy, Elsevier, vol. 32(9), pages 1594-1610.
    2. Ahsanullah Memon & Mohd Wazir Mustafa & Muhammad Naveed Aman & Mukhtar Ullah & Tariq Kamal & Abdul Hafeez, 2021. "Dynamic Low Voltage Ride through Detection and Mitigation in Brushless Doubly Fed Induction Generators," Energies, MDPI, vol. 14(15), pages 1-17, July.
    3. Junyang Xu & Pengcheng Nie, 2024. "Optimal Control of Brushless Doubly Fed Wind Power Generator under Zero-Voltage Ride-Through," Energies, MDPI, vol. 17(1), pages 1-15, January.
    4. Sajadi, A. & Strezoski, L. & Clark, K. & Prica, M. & Loparo, K.A., 2018. "Transmission system protection screening for integration of offshore wind power plants," Renewable Energy, Elsevier, vol. 125(C), pages 225-233.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Ismail Marri & Najeeb Ur Rehman Malik & Muhammad Masud & Touqeer Ahmed Jumani & Atta Ullah Khidrani & Zeeshan Shahid, 2025. "Reinforcement Learning-Based Current Compensation for Brushless Doubly Fed Induction Generators Under Transient- and Low-Voltage Ride-Through Faults," Energies, MDPI, vol. 18(4), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Justo, Jackson John & Mwasilu, Francis & Jung, Jin-Woo, 2015. "Doubly-fed induction generator based wind turbines: A comprehensive review of fault ride-through strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 447-467.
    2. Ruiz de la Hermosa González-Carrato, Raúl & García Márquez, Fausto Pedro & Dimlaye, Vichaar, 2015. "Maintenance management of wind turbines structures via MFCs and wavelet transforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 472-482.
    3. Eissa (SIEEE), M.M., 2015. "Protection techniques with renewable resources and smart grids—A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1645-1667.
    4. Muhammad Ismail Marri & Najeeb Ur Rehman Malik & Muhammad Masud & Touqeer Ahmed Jumani & Atta Ullah Khidrani & Zeeshan Shahid, 2025. "Reinforcement Learning-Based Current Compensation for Brushless Doubly Fed Induction Generators Under Transient- and Low-Voltage Ride-Through Faults," Energies, MDPI, vol. 18(4), pages 1-26, February.
    5. Ioannis D. Margaris & Anca D. Hansen & Poul Sørensen & Nikolaos D. Hatziargyriou, 2010. "Illustration of Modern Wind Turbine Ancillary Services," Energies, MDPI, vol. 3(6), pages 1-13, June.
    6. Damdoum, Amel & Slama-Belkhodja, Ilhem & Pietrzak-David, Maria & Debbou, Mustapha, 2016. "Low voltage ride-through strategies for doubly fed induction machine pumped storage system under grid faults," Renewable Energy, Elsevier, vol. 95(C), pages 248-262.
    7. Márquez, Fausto Pedro García & Pérez, Jesús María Pinar & Marugán, Alberto Pliego & Papaelias, Mayorkinos, 2016. "Identification of critical components of wind turbines using FTA over the time," Renewable Energy, Elsevier, vol. 87(P2), pages 869-883.
    8. Papaefthymiou, Stefanos V. & Lakiotis, Vasileios G. & Margaris, Ioannis D. & Papathanassiou, Stavros A., 2015. "Dynamic analysis of island systems with wind-pumped-storage hybrid power stations," Renewable Energy, Elsevier, vol. 74(C), pages 544-554.
    9. Zeno, Aldrich & Orillaza, Jordan Rel & Kolhe, Mohan Lal, 2020. "Analysing the effects of power swing on wind farms using instantaneous impedances," Renewable Energy, Elsevier, vol. 147(P1), pages 1432-1452.
    10. Carunaiselvane, C. & Chelliah, Thanga Raj, 2017. "Present trends and future prospects of asynchronous machines in renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1028-1041.
    11. Mitra, Arghya & Chatterjee, Dheeman, 2013. "A sensitivity based approach to assess the impacts of integration of variable speed wind farms on the transient stability of power systems," Renewable Energy, Elsevier, vol. 60(C), pages 662-671.
    12. Amer Saeed, M. & Mehroz Khan, Hafiz & Ashraf, Arslan & Aftab Qureshi, Suhail, 2018. "Analyzing effectiveness of LVRT techniques for DFIG wind turbine system and implementation of hybrid combination with control schemes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2487-2501.
    13. Helsen, Jan & Vanhollebeke, Frederik & Marrant, Ben & Vandepitte, Dirk & Desmet, Wim, 2011. "Multibody modelling of varying complexity for modal behaviour analysis of wind turbine gearboxes," Renewable Energy, Elsevier, vol. 36(11), pages 3098-3113.
    14. Li, H. & Zhao, B. & Yang, C. & Chen, H.W. & Chen, Z., 2011. "Analysis and estimation of transient stability for a grid-connected wind turbine with induction generator," Renewable Energy, Elsevier, vol. 36(5), pages 1469-1476.
    15. Fernández, R.D. & Battaiotto, P.E. & Mantz, R.J., 2008. "Wind farm non-linear control for damping electromechanical oscillations of power systems," Renewable Energy, Elsevier, vol. 33(10), pages 2258-2265.
    16. Ukashatu Abubakar & Saad Mekhilef & Hazlie Mokhlis & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski & Hussain Bassi & Muhyaddin Jamal Hosin Rawa, 2018. "Transient Faults in Wind Energy Conversion Systems: Analysis, Modelling Methodologies and Remedies," Energies, MDPI, vol. 11(9), pages 1-33, August.
    17. Mohd Zin, Abdullah Asuhaimi B. & Pesaran H.A., Mahmoud & Khairuddin, Azhar B. & Jahanshaloo, Leila & Shariati, Omid, 2013. "An overview on doubly fed induction generators′ controls and contributions to wind based electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 692-708.
    18. Li, Canbing & Shi, Haiqing & Cao, Yijia & Wang, Jianhui & Kuang, Yonghong & Tan, Yi & Wei, Jing, 2015. "Comprehensive review of renewable energy curtailment and avoidance: A specific example in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1067-1079.
    19. Colak, Ilhami & Fulli, Gianluca & Bayhan, Sertac & Chondrogiannis, Stamatios & Demirbas, Sevki, 2015. "Critical aspects of wind energy systems in smart grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 155-171.
    20. Naderi, Seyed Behzad & Negnevitsky, Michael & Jalilian, Amin & Hagh, Mehrdad Tarafdar, 2016. "Efficient fault ride-through scheme for three phase voltage source inverter-interfaced distributed generation using DC link adjustable resistive type fault current limiter," Renewable Energy, Elsevier, vol. 92(C), pages 484-498.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:1:p:147-:d:1558774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.