IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4758-d1744105.html
   My bibliography  Save this article

Numerical Investigation of Hydrogen Production via Methane Steam Reforming in Tubular Packed Bed Reactors Integrated with Annular Metal Foam Gas Channels

Author

Listed:
  • Yifan Han

    (School of Nuclear Science and Energy Engineering, Shandong University, Jinan 250061, China)

  • Zihui Zhang

    (School of Nuclear Science and Energy Engineering, Shandong University, Jinan 250061, China)

  • Zhen Wang

    (School of Nuclear Science and Energy Engineering, Shandong University, Jinan 250061, China)

  • Guanmin Zhang

    (School of Nuclear Science and Energy Engineering, Shandong University, Jinan 250061, China)

Abstract

Methane steam reforming is the most widely adopted hydrogen production technology. To address the challenges associated with the large radial thermal resistance and low mass transfer rates inherent in the tubular packed bed reactors during the MSR process, this study proposes a structural design optimization that integrates annular metal foam gas channels along the inner wall of the reforming tubes. Utilizing multi-physics simulation methods and taking the conventional tubular reactor as a baseline, a comparative analysis was performed on physical parameters that characterize flow behavior, heat transfer, and reaction in the reforming process. The integration of the annular channels induces a radially non-uniform distribution of flow resistance in the tubes. Since the metal foam exhibits lower resistance, the fluid preferentially flows through the annular channels, leading to a diversion effect that enhances both convective heat transfer and mass transfer. The diversion effect redirects the central flow toward the near-wall region, where the higher reactant concentration promotes the reaction. Additionally, the higher thermal conductivity of the metal foam strengthens radial heat transfer, further accelerating the reaction. The effects of operating parameters on performance were also investigated. While a higher inlet velocity tends to hinder the reaction, in tubes integrated with annular channels, it enhances the diversion effect and convective heat transfer. This offsets the adverse impact, maintaining high methane conversion with lower pressure drop and thermal resistance than the conventional tubular reactor does.

Suggested Citation

  • Yifan Han & Zihui Zhang & Zhen Wang & Guanmin Zhang, 2025. "Numerical Investigation of Hydrogen Production via Methane Steam Reforming in Tubular Packed Bed Reactors Integrated with Annular Metal Foam Gas Channels," Energies, MDPI, vol. 18(17), pages 1-24, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4758-:d:1744105
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4758/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4758/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ngo, Son Ich & Lim, Young-Il & Kim, Woohyun & Seo, Dong Joo & Yoon, Wang Lai, 2019. "Computational fluid dynamics and experimental validation of a compact steam methane reformer for hydrogen production from natural gas," Applied Energy, Elsevier, vol. 236(C), pages 340-353.
    2. He, Ziqiang & Yan, Yunfei & Zhao, Ting & Zhang, Zhien & Mikulčić, Hrvoje, 2022. "Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Huayu & Zhang, Yuhao & Gao, Wenhua & Yan, Bowen & Zhao, Jianxin & Zhang, Hao & Chen, Wei & Fan, Daming, 2021. "Steam replacement strategy using microwave resonance: A future system for continuous-flow heating applications," Applied Energy, Elsevier, vol. 283(C).
    2. He, Ziqiang & You, Jingxiang & Kang, Dugang & Zou, Qunfeng & Zhang, Wenxiang & Zhang, Zhien, 2024. "Overall numerical simulation of chemical-thermal-electric conversion for an all-in-one thermoelectric generator based on micro scale combustion," Energy, Elsevier, vol. 292(C).
    3. Zhao, He & Zhao, Dan & Becker, Sid & Rong, Hui & Zhao, Xiaohuan, 2023. "Entropy generation and improved thermal performance investigation on a hydrogen-fuelled double-channel microcombustor with Y-shaped internal fins," Energy, Elsevier, vol. 283(C).
    4. Tian, Xinghua & Xu, Li & Peng, Qingguo & Wu, Yifeng & Wang, Hao & Yan, Feng & Zhang, Long & Teng, Peng & Fu, Shuai, 2024. "Experimental and numerical investigation on energy efficiency improvement of methane/propane added of hydrogen-fueled micro power generation," Energy, Elsevier, vol. 302(C).
    5. Chen, Wei-Hsin & Calapatia, Andre Marvin A. & Ubando, Aristotle T., 2024. "Design of dual-channel Swiss-roll reactor for high-performance hydrogen production from ethanol steam reforming through waste heat valorization," Energy, Elsevier, vol. 306(C).
    6. Wu, Zhihong & Guo, Zhigang & Yang, Jian & Wang, Qiuwang, 2023. "Numerical investigation of methane steam reforming in packed bed reactor with internal helical heat fins," Energy, Elsevier, vol. 278(PB).
    7. Pashchenko, Dmitry & Karpilov, Igor & Polyakov, Mikhail & Popov, Stanislav K., 2024. "Techno-economic evaluation of a thermochemical waste-heat recuperation system for industrial furnace application: Operating cost analysis," Energy, Elsevier, vol. 295(C).
    8. Yılmaz, Semih & Kumlutaş, Dilek & Özer, Özgün & Yücekaya, Utku Alp & Avcı, Hasan & Cumbul, Ahmet Yakup, 2024. "Parametric investigation of premixed gas inlet conditions effects on flow and combustion characteristics," Applied Energy, Elsevier, vol. 353(PA).
    9. Yuquan Zhang & Yanhe Xu & Yuan Zheng & E. Fernandez-Rodriguez & Aoran Sun & Chunxia Yang & Jue Wang, 2019. "Multiobjective Optimization Design and Experimental Investigation on the Axial Flow Pump with Orthogonal Test Approach," Complexity, Hindawi, vol. 2019, pages 1-14, December.
    10. Li, Jintao & E, Jiaqiang & Ding, Jiangjun & Cai, Lei & Luo, Bo, 2024. "Effect analysis on the low-temperature preheating performance of a novel micro-combustor air preheater for the cold start of the Li-ion battery packs," Energy, Elsevier, vol. 312(C).
    11. Shan Dong & Yi Lin & Jiajun Hu & Chenglin Gu & Leilin Ding & Xinjian Zhang & Shi Jiang & Yu Guo, 2023. "Preparation of an Anodic Alumina-Supported Ni Catalyst and Development of a Catalytic Plate Reformer for the Steam Reforming of Methane," Energies, MDPI, vol. 16(8), pages 1-25, April.
    12. Cai, Lei & He, Tianzhi & Xiang, Yanlei & Guan, Yanwen, 2020. "Study on the reaction pathways of steam methane reforming for H2 production," Energy, Elsevier, vol. 207(C).
    13. Abuseada, Mostafa & Fisher, Timothy S., 2023. "Continuous solar-thermal methane pyrolysis for hydrogen and graphite production by roll-to-roll processing," Applied Energy, Elsevier, vol. 352(C).
    14. He, Ziqiang & Zhang, Lei & Li, Xiuquan & You, Jingxiang & Xue, Zongguo & Yan, Yunfei, 2023. "Heat transfer enhancement and pressure loss analysis of hydrogen-fueled microcombustor with slinky projection shape channel for micro-thermophotovoltaic system," Energy, Elsevier, vol. 283(C).
    15. Wang, Hao & Peng, Qingguo & Tian, Xinghua & Yan, Feng & Wei, Depeng & Liu, Hui, 2024. "Experimental and numerical investigation on H2-fueled micro-thermophotovoltaic with CH4 and C3H8 blending in a tube fully/partially inserted porous media," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    16. Kagan Ayaz, S. & Caliskan, Hakan & Altuntas, Onder, 2023. "Environmental and second law analysis of a turbojet engine operating with different fuels," Energy, Elsevier, vol. 285(C).
    17. Zuo, Wei & Li, Dexin & E, Jiaqiang & Xia, Yongfang & Li, Qingqing & Quan, Yifan & Zhang, Guangde, 2023. "Parametric study of cavity on the performance of a hydrogen-fueled micro planar combustor for thermophotovoltaic applications," Energy, Elsevier, vol. 263(PD).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4758-:d:1744105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.