IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i17p4729-d1742728.html
   My bibliography  Save this article

Experimental Investigation of the Capture Performance Model for a Novel Omnidirectional Wave Energy Converter

Author

Listed:
  • Wensheng Wang

    (College of Energy Science and Technology, University of Science and Technology of China, Hefei 230026, China
    Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
    Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
    Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Jingfeng Liu

    (College of Energy Science and Technology, University of Science and Technology of China, Hefei 230026, China
    Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
    Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
    Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Zhenpeng Wang

    (College of Energy Science and Technology, University of Science and Technology of China, Hefei 230026, China
    Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
    Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
    Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Zhaoji Lin

    (College of Energy Science and Technology, University of Science and Technology of China, Hefei 230026, China
    Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
    Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
    Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Guoyu Zhang

    (College of Energy Science and Technology, University of Science and Technology of China, Hefei 230026, China
    Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
    Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
    Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Yaqun Zhang

    (College of Energy Science and Technology, University of Science and Technology of China, Hefei 230026, China
    Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
    Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
    Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510640, China)

Abstract

The performance of wave energy converters (WECs) in terms of energy capture presents considerable challenges in enhancing conversion efficiency. This research proposes a structural design and operational principle for an omnidirectional oscillating buoy WEC (OOBWEC), featuring six absorbers arranged in a circular configuration. To validate the proposed design and operational principle, experimental investigations were conducted within a wave flume. The experimental findings indicate that the capture width ratio (CWR) peaked at approximately 68.15% when the incident wave period was 1.8 s and the wave height was 80 mm. It was observed that as the wave period increased, the CWR initially rose before gradually declining. Conversely, an increase in wave height corresponded with a gradual decrease in the CWR. Notably, due to the angle of the incoming waves, the power captured by the forward absorber significantly exceeded that of the other absorbers. These results provide a basis for future numerical simulations, and further experimental studies will be conducted to optimize the WEC’s structure and improve its energy conversion efficiency.

Suggested Citation

  • Wensheng Wang & Jingfeng Liu & Zhenpeng Wang & Zhaoji Lin & Guoyu Zhang & Yaqun Zhang, 2025. "Experimental Investigation of the Capture Performance Model for a Novel Omnidirectional Wave Energy Converter," Energies, MDPI, vol. 18(17), pages 1-13, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4729-:d:1742728
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/17/4729/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/17/4729/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Palha, Artur & Mendes, Lourenço & Fortes, Conceição Juana & Brito-Melo, Ana & Sarmento, António, 2010. "The impact of wave energy farms in the shoreline wave climate: Portuguese pilot zone case study using Pelamis energy wave devices," Renewable Energy, Elsevier, vol. 35(1), pages 62-77.
    2. Leonard, Matthew D. & Michaelides, Efstathios E. & Michaelides, Dimitrios N., 2020. "Energy storage needs for the substitution of fossil fuel power plants with renewables," Renewable Energy, Elsevier, vol. 145(C), pages 951-962.
    3. Chenglong Guo & Wanan Sheng & Dakshina G. De Silva & George Aggidis, 2023. "A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model," Energies, MDPI, vol. 16(5), pages 1-30, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Majidi, Ajab Gul & Ramos, Victor & Rosa-Santos, Paulo & das Neves, Luciana & Taveira-Pinto, Francisco, 2025. "Power production assessment of wave energy converters in mainland Portugal," Renewable Energy, Elsevier, vol. 243(C).
    2. He, Guanghua & Luan, Zhengxiao & Zhang, Wei & He, Runhua & Liu, Chaogang & Yang, Kaibo & Yang, Changhao & Jing, Penglin & Zhang, Zhigang, 2023. "Review on research approaches for multi-point absorber wave energy converters," Renewable Energy, Elsevier, vol. 218(C).
    3. López, I. & Castro, A. & Iglesias, G., 2015. "Hydrodynamic performance of an oscillating water column wave energy converter by means of particle imaging velocimetry," Energy, Elsevier, vol. 83(C), pages 89-103.
    4. Shi, Hongda & Zhao, Chenyu & Hann, Martyn & Greaves, Deborah & Han, Zhi & Cao, Feifei, 2019. "WHTO: A methodology of calculating the energy extraction of wave energy convertors based on wave height reduction," Energy, Elsevier, vol. 185(C), pages 299-315.
    5. A. Cesar Y. Acevedo Arenas & Yecid A. Muñoz Maldonado & Johann F. Petit Suárez & Duban H. Morales Sánchez & Daniel F. Ramírez Contreras, 2024. "Towards a Standardized LCOE Calculation for Informed Decision-Making in Energy Policy and Investment: Application to the Colombian Context," International Journal of Energy Economics and Policy, Econjournals, vol. 14(6), pages 523-541, November.
    6. Zhang, Wanshi & Wu, Yunlei & Li, Xiuwei & Cheng, Feng & Zhang, Xiaosong, 2021. "Performance investigation of the wood-based heat localization regenerator in liquid desiccant cooling system," Renewable Energy, Elsevier, vol. 179(C), pages 133-149.
    7. Min Chen & Songwei Sheng & Yaqun Zhang & Zhenpeng Wang & Kunlin Wang & Jiaqiang Jiang, 2025. "Model Test and Sea Trial of a Multi-Absorber 1 MW Wave Energy Converter," Energies, MDPI, vol. 18(17), pages 1-20, September.
    8. Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2020. "Modeling and dispatch of advanced adiabatic compressed air energy storage under wide operating range in distribution systems with renewable generation," Energy, Elsevier, vol. 206(C).
    9. Vitale, F. & Rispoli, N. & Sorrentino, M. & Rosen, M.A. & Pianese, C., 2021. "On the use of dynamic programming for optimal energy management of grid-connected reversible solid oxide cell-based renewable microgrids," Energy, Elsevier, vol. 225(C).
    10. Daiva Makutėnienė & Algirdas Justinas Staugaitis & Bernardas Vaznonis & Gunta Grīnberga-Zālīte, 2023. "The Relationship between Energy Consumption and Economic Growth in the Baltic Countries’ Agriculture: A Non-Linear Framework," Energies, MDPI, vol. 16(5), pages 1-22, February.
    11. Ting Zhang & Shuaishuai Cao & Lingying Pan & Chenyu Zhou, 2020. "A Policy Effect Analysis of China’s Energy Storage Development Based on a Multi-Agent Evolutionary Game Model," Energies, MDPI, vol. 13(23), pages 1-35, November.
    12. Liu, Yijin & Li, Ye & He, Fenglan & Wang, Haifeng, 2017. "Comparison study of tidal stream and wave energy technology development between China and some Western Countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 701-716.
    13. Chen, Xinhui & Wei, Jianfeng & Sheng, Songwei & Wang, Wensheng & Wang, Kunlin & Zhang, Yaqun & Wang, Zhenpeng, 2023. "Design and experimental study of a novel type water-filled submerged flexible bag wave energy converter," Renewable Energy, Elsevier, vol. 218(C).
    14. Manuel Corrales-Gonzalez & George Lavidas & Giovanni Besio, 2023. "Feasibility of Wave Energy Harvesting in the Ligurian Sea, Italy," Sustainability, MDPI, vol. 15(11), pages 1-22, June.
    15. Brumana, Giovanni & Franchini, Giuseppe & Ghirardi, Elisa & Perdichizzi, Antonio, 2022. "Techno-economic optimization of hybrid power generation systems: A renewables community case study," Energy, Elsevier, vol. 246(C).
    16. Roche, R.C. & Walker-Springett, K. & Robins, P.E. & Jones, J. & Veneruso, G. & Whitton, T.A. & Piano, M. & Ward, S.L. & Duce, C.E. & Waggitt, J.J. & Walker-Springett, G.R. & Neill, S.P. & Lewis, M.J. , 2016. "Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK)," Renewable Energy, Elsevier, vol. 99(C), pages 1327-1341.
    17. Barry, C.A. & Ringwood, J.V., 2025. "Wave energy technology development in Ireland: Employing the triple helix model of innovation for pragmatic policy interventions," Technology in Society, Elsevier, vol. 81(C).
    18. Veigas, M. & Ramos, V. & Iglesias, G., 2014. "A wave farm for an island: Detailed effects on the nearshore wave climate," Energy, Elsevier, vol. 69(C), pages 801-812.
    19. Bozzi, Silvia & Giassi, Marianna & Moreno Miquel, Adrià & Antonini, Alessandro & Bizzozero, Federica & Gruosso, Giambattista & Archetti, Renata & Passoni, Giuseppe, 2017. "Wave energy farm design in real wave climates: the Italian offshore," Energy, Elsevier, vol. 122(C), pages 378-389.
    20. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4729-:d:1742728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.