IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i16p4232-d1720811.html
   My bibliography  Save this article

Long-Term Thermal Stability of Aerogel and Basalt Fiber Pipeline Insulation Under Simulated Atmospheric Aging

Author

Listed:
  • Irina Akhmetova

    (Institute of Digital Technologies and Economics, Kazan State Power Engineering University, Kazan 420066, Russia)

  • Alexander Fedyukhin

    (Institute of Energy Efficiency and Hydrogen Technologies, National Research University Moscow Power Engineering Institute, Moscow 111250, Russia)

  • Anna Dontsova

    (Laboratory of Protected and Modular Structures, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia)

  • Umberto Berardi

    (Department of Architecture, Built Environment and Design, Polytechnic University of Bari, Via Orabona 4, 70126 Bari, Italy)

  • Olga Afanaseva

    (Advanced Engineering School “Digital Engineering”, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia)

  • Kamilya Gafiatullina

    (Institute of Atomic and Thermal Energy, Kazan State Power Engineering University, Kazan 420066, Russia)

  • Maksim Kraikov

    (Institute of Atomic and Thermal Energy, Kazan State Power Engineering University, Kazan 420066, Russia)

  • Darya Nemova

    (Laboratory of Protected and Modular Structures, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia)

  • Valeria Selicati

    (Department of Architecture, Built Environment and Design, Polytechnic University of Bari, Via Orabona 4, 70126 Bari, Italy)

  • Roberto Stasi

    (Department of Architecture, Built Environment and Design, Polytechnic University of Bari, Via Orabona 4, 70126 Bari, Italy)

Abstract

Thermal insulation materials used in power and industrial systems must maintain high performance under extreme environmental conditions. Among such materials, aerogel and basalt fiber are widely applied due to their low thermal conductivity and ease of installation. However, over time, these materials are susceptible to degradation, which can significantly impair their insulating efficiency and increase energy losses. Despite their importance, the long-term behavior of these materials under realistic climatic stressors has not been analyzed enough. This study investigates the degradation of thermal insulation performance in aerogel and basalt fiber materials subjected to complex atmospheric stressors, simulating long-term outdoor exposure. Aerogel and basalt fiber mats were tested under accelerated aging conditions using an artificial weather chamber equipped with xenon lamps to replicate full-spectrum solar radiation, high humidity, and elevated temperatures. The results show that the thermal conductivity of aerogel remained stable, indicating excellent durability under environmental stress. In contrast, basalt fiber insulation exhibited a deterioration in thermal performance, with a 9–11% increase in thermal conductivity, corresponding to reduced thermal resistance. Computational modeling using COMSOL Multiphysics confirmed that aerogel insulation outperforms basalt fiber, especially at temperatures exceeding 200 °C, offering better heat retention with thinner layers. These findings suggest aerogel-based materials are more suitable for long-term thermal insulation of high-temperature pipelines and industrial equipment.

Suggested Citation

  • Irina Akhmetova & Alexander Fedyukhin & Anna Dontsova & Umberto Berardi & Olga Afanaseva & Kamilya Gafiatullina & Maksim Kraikov & Darya Nemova & Valeria Selicati & Roberto Stasi, 2025. "Long-Term Thermal Stability of Aerogel and Basalt Fiber Pipeline Insulation Under Simulated Atmospheric Aging," Energies, MDPI, vol. 18(16), pages 1-17, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4232-:d:1720811
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/16/4232/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/16/4232/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexander V. Fedyukhin & Konstantin V. Strogonov & Olga V. Soloveva & Sergei A. Solovev & Irina G. Akhmetova & Umberto Berardi & Mark D. Zaitsev & Daniil V. Grigorev, 2022. "Aerogel Product Applications for High-Temperature Thermal Insulation," Energies, MDPI, vol. 15(20), pages 1-15, October.
    2. Stanislav Chicherin & Vladislav Mašatin & Andres Siirde & Anna Volkova, 2020. "Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy," Energies, MDPI, vol. 13(17), pages 1-15, September.
    3. Tzouganakis, Panteleimon & Fotopoulou, Maria & Rakopoulos, Dimitrios & Romanchenko, Dmytro & Nikolopoulos, Nikolaos, 2025. "District heating system analysis and design optimization," Energy, Elsevier, vol. 326(C).
    4. Berardi, Umberto, 2019. "The impact of aging and environmental conditions on the effective thermal conductivity of several foam materials," Energy, Elsevier, vol. 182(C), pages 777-794.
    5. Yuri Vankov & Elvira Bazukova & Dmitry Emelyanov & Alexander Fedyukhin & Olga Afanaseva & Irina Akhmetova & Umberto Berardi, 2022. "Experimental Assessment of the Thermal Conductivity of Basalt Fibres at High Temperatures," Energies, MDPI, vol. 15(8), pages 1-11, April.
    6. Peter Lidén & Bijan Adl-Zarrabi & Carl-Eric Hagentoft, 2021. "Diagnostic Protocol for Thermal Performance of District Heating Pipes in Operation. Part 2: Estimation of Present Thermal Conductivity in Aged Pipe Insulation," Energies, MDPI, vol. 14(17), pages 1-15, August.
    7. Li, Lun & Zhai, Chong & Shang, Yuhe & Lou, Chao & Li, Xiaohui & Li, Dong, 2024. "Life cycle cost approach involving steam transport model for insulation thickness optimization of steam pipes," Energy, Elsevier, vol. 312(C).
    8. Matjaž Perpar & Zlatko Rek, 2021. "The Ability of a Soil Temperature Gradient-Based Methodology to Detect Leaks from Pipelines in Buried District Heating Channels," Energies, MDPI, vol. 14(18), pages 1-13, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing, Mengke & Zhang, Shujie & Fu, Lisong & Cao, Guoquan & Wang, Rui, 2023. "Reducing heat losses from aging district heating pipes by using cured-in-place pipe liners," Energy, Elsevier, vol. 273(C).
    2. Alexander V. Fedyukhin & Konstantin V. Strogonov & Olga V. Soloveva & Sergei A. Solovev & Irina G. Akhmetova & Umberto Berardi & Mark D. Zaitsev & Daniil V. Grigorev, 2022. "Aerogel Product Applications for High-Temperature Thermal Insulation," Energies, MDPI, vol. 15(20), pages 1-15, October.
    3. Fester, Jakob & Østergaard, Peter Friis & Bentsen, Fredrik & Nielsen, Brian Kongsgaard, 2023. "A data-driven method for heat loss estimation from district heating service pipes using heat meter- and GIS data," Energy, Elsevier, vol. 277(C).
    4. Yuri Vankov & Elvira Bazukova & Dmitry Emelyanov & Alexander Fedyukhin & Olga Afanaseva & Irina Akhmetova & Umberto Berardi, 2022. "Experimental Assessment of the Thermal Conductivity of Basalt Fibres at High Temperatures," Energies, MDPI, vol. 15(8), pages 1-11, April.
    5. Manservigi, Lucrezia & Bahlawan, Hilal & Losi, Enzo & Morini, Mirko & Spina, Pier Ruggero & Venturini, Mauro, 2022. "A diagnostic approach for fault detection and identification in district heating networks," Energy, Elsevier, vol. 251(C).
    6. Wirtz, Marco, 2023. "nPro: A web-based planning tool for designing district energy systems and thermal networks," Energy, Elsevier, vol. 268(C).
    7. Cai, Shanshan & Guo, Haijin & Zhang, Boxiong & Xu, Guowen & Li, Kun & Xia, Lizhi, 2020. "Multi-scale simulation study on the hygrothermal behavior of closed-cell thermal insulation," Energy, Elsevier, vol. 196(C).
    8. Matjaž Perpar & Zlatko Rek, 2021. "The Ability of a Soil Temperature Gradient-Based Methodology to Detect Leaks from Pipelines in Buried District Heating Channels," Energies, MDPI, vol. 14(18), pages 1-13, September.
    9. Stanislav Chicherin, 2025. "Conversion to Fourth-Generation District Heating (4GDH): Heat Accumulation Within Building Envelopes," Energies, MDPI, vol. 18(9), pages 1-19, April.
    10. Bożena Babiarz & Władysław Szymański, 2020. "Introduction to the Dynamics of Heat Transfer in Buildings," Energies, MDPI, vol. 13(23), pages 1-28, December.
    11. Guo, Haijin & Cai, Shanshan & Li, Kun & Liu, Zhongming & Xia, Lizhi & Xiong, Jiazhuang, 2020. "Simultaneous test and visual identification of heat and moisture transport in several types of thermal insulation," Energy, Elsevier, vol. 197(C).
    12. Peter Lidén & Bijan Adl-Zarrabi & Carl-Eric Hagentoft, 2021. "Diagnostic Protocol for Thermal Performance of District Heating Pipes in Operation. Part 2: Estimation of Present Thermal Conductivity in Aged Pipe Insulation," Energies, MDPI, vol. 14(17), pages 1-15, August.
    13. Chicherin, Stanislav & Anvari-Moghaddam, Amjad, 2021. "Adjusting heat demands using the operational data of district heating systems," Energy, Elsevier, vol. 235(C).
    14. Jakubek, Dariusz & Ocłoń, Paweł & Nowak-Ocłoń, Marzena & Sułowicz, Maciej & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2023. "Mathematical modelling and model validation of the heat losses in district heating networks," Energy, Elsevier, vol. 267(C).
    15. Henrik Schwaeppe & Luis Böttcher & Klemens Schumann & Lukas Hein & Philipp Hälsig & Simon Thams & Paula Baquero Lozano & Albert Moser, 2022. "Analyzing Intersectoral Benefits of District Heating in an Integrated Generation and Transmission Expansion Planning Model," Energies, MDPI, vol. 15(7), pages 1-31, March.
    16. Ahmad Taki & Anastasiya Zakharanka, 2023. "The Effect of Degradation on Cold Climate Building Energy Performance: A Comparison with Hot Climate Buildings," Sustainability, MDPI, vol. 15(8), pages 1-38, April.
    17. Sara Dias & António Tadeu & Amílcar Ramalho & Michael Brett & Filipe Pedro, 2022. "Thermal and Mechanical Characterisation of Sandwich Core Materials for Climatic Chamber Shells Subjected to High Temperatures," Energies, MDPI, vol. 15(6), pages 1-18, March.
    18. Chicherin, Stanislav & Starikov, Aleksander & Zhuikov, Andrey, 2022. "Justifying network reconstruction when switching to low temperature district heating," Energy, Elsevier, vol. 248(C).
    19. Yurou Tong & Hui Yang & Li Bao & Baoxia Guo & Yanzhuo Shi & Congcong Wang, 2022. "Analysis of Thermal Insulation Thickness for a Container House in the Yanqing Zone of the Beijing 2022 Olympic and Paralympic Winter Games," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    20. Silvia Ravelli, 2022. "District Heating and Cooling towards Net Zero," Energies, MDPI, vol. 15(16), pages 1-2, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4232-:d:1720811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.