IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p4171-d1718823.html
   My bibliography  Save this article

Fourier–Bessel Series Expansion and Empirical Wavelet Transform-Based Technique for Discriminating Between PV Array and Line Faults to Enhance Resiliency of Protection in DC Microgrid

Author

Listed:
  • Laxman Solankee

    (Department of Electrical Engineering, University Institute of Technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal 462033, MP, India)

  • Avinash Rai

    (Department of Electronics and Communication Engineering, University Institute of Technology, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal 462033, MP, India)

  • Mukesh Kirar

    (Department of Electrical Engineering, Maulana Azad National Institute of Technology, Bhopal 462003, MP, India)

Abstract

The growing demand for power and the rising awareness of the need to reduce carbon footprints have led to wider acceptance of photovoltaic (PV)-integrated microgrids. PV-based microgrids have numerous significant advantages over other distributed energy resources; however, creating a dependable protection scheme for the DC microgrid is difficult due to the closely resembling current and voltage profiles of PV array faults and line faults in the DC network. The conventional methods fail to clearly discriminate between them. In this regard, a fault-resilient scheme exploiting the inherent characteristics of Fourier–Bessel Series Expansion and Empirical Wavelet Transform (FBSE-EWT) has been utilized in the present work. In order to enhance the efficacy of the bagging tree-based ensemble classifier, Artificial Gorilla Troop Optimization (AGTO) has been used to tune the hyperparameters. The hybrid protection approach is proposed for accurate fault detection, discrimination between scenarios (source-side fault and line-side fault), and classification of various fault types (pole–pole and pole–ground). The discriminatory attributes derived from voltage and current signals recorded at the DC bus using the hybrid FBSE-EWT have been utilized as an input feature set for the AGTO tuned bagging tree-based ensemble classifier to perform the intended tasks of fault detection and discrimination between source faults (PV array faults) and line faults (DC network). The proposed approach has been found to outperform the decision tree and SVM techniques, demonstrating reliability in terms of discriminating between the PV array faults and the DC line faults and resilience against fluctuations in PV irradiance levels.

Suggested Citation

  • Laxman Solankee & Avinash Rai & Mukesh Kirar, 2025. "Fourier–Bessel Series Expansion and Empirical Wavelet Transform-Based Technique for Discriminating Between PV Array and Line Faults to Enhance Resiliency of Protection in DC Microgrid," Energies, MDPI, vol. 18(15), pages 1-27, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4171-:d:1718823
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/4171/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/4171/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lupangu, C. & Bansal, R.C., 2017. "A review of technical issues on the development of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 950-965.
    2. Jia, Ke & Li, Yanbin & Fang, Yu & Zheng, Liming & Bi, Tianshu & Yang, Qixun, 2018. "Transient current similarity based protection for wind farm transmission lines," Applied Energy, Elsevier, vol. 225(C), pages 42-51.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wesly Jean & Marcel Bursztyn & Nelson Bernal & Antonio C. P. Brasil Junior & Gabriela Litre & Daniela Nogueira, 2024. "Linking Energy Transition to Income Generation for Vulnerable Populations in Brazil: A Win-Win Strategy," Sustainability, MDPI, vol. 16(17), pages 1-18, August.
    2. Yingyu Liang & Guanjun Xu & Wenting Zha & Cong Wang, 2019. "Adaptability Analysis of Fault Component Distance Protection on Transmission Lines Connected to Photovoltaic Power Stations," Energies, MDPI, vol. 12(8), pages 1-19, April.
    3. Saranchimeg, Sainbold & Nair, Nirmal K.C., 2021. "A novel framework for integration analysis of large-scale photovoltaic plants into weak grids," Applied Energy, Elsevier, vol. 282(PA).
    4. Ridha, Hussein Mohammed & Gomes, Chandima & Hizam, Hashim & Ahmadipour, Masoud & Heidari, Ali Asghar & Chen, Huiling, 2021. "Multi-objective optimization and multi-criteria decision-making methods for optimal design of standalone photovoltaic system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. AL-Rasheedi, Majed & Gueymard, Christian A. & Al-Khayat, Mohammad & Ismail, Alaa & Lee, Jared A. & Al-Duaj, Hamad, 2020. "Performance evaluation of a utility-scale dual-technology photovoltaic power plant at the Shagaya Renewable Energy Park in Kuwait," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Andrea Marchioni & Carlo Alberto Magni & Davide Baschieri, 2020. "Investment and Financing Perspectives for a Solar Photovoltaic Project," MIC 2020: The 20th Management International Conference,, University of Primorska Press.
    7. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    8. Arsad, A.Z. & Zuhdi, A.W. Mahmood & Azhar, A.D. & Chau, C.F. & Ghazali, A., 2025. "Advancements in maximum power point tracking for solar charge controllers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    9. He, Jiawei & Bu, Ningjing & Wen, Weijie & Li, Bin & Zhang, Shouhang & Zhou, Bohao & Wu, Jianzhong, 2025. "Performance analysis and control-coordinated improvement method for distance protection of energy storage station grid-connected lines," Applied Energy, Elsevier, vol. 388(C).
    10. Thomas T. D. Tran & Amanda D. Smith, 2019. "Stochastic Optimization for Integration of Renewable Energy Technologies in District Energy Systems for Cost-Effective Use," Energies, MDPI, vol. 12(3), pages 1-26, February.
    11. Xu Li & Yuping Lu & Tao Huang, 2020. "Impact of the DFIG-Based Wind Farm Connection on the Fault Component-Based Directional Relay and a Mitigation Countermeasure," Energies, MDPI, vol. 13(17), pages 1-27, August.
    12. Isabel Santiago & David Trillo Montero & Juan J. Luna Rodríguez & Isabel M. Moreno Garcia & Emilio J. Palacios Garcia, 2017. "Graphical Diagnosis of Performances in Photovoltaic Systems: A Case Study in Southern Spain," Energies, MDPI, vol. 10(12), pages 1-26, November.
    13. Yingyu Liang & Wulin Li & Guanjun Xu, 2020. "Performance Problem of Current Differential Protection of Lines Emanating from Photovoltaic Power Plants," Sustainability, MDPI, vol. 12(4), pages 1-17, February.
    14. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    15. Ukashatu Abubakar & Saad Mekhilef & Hazlie Mokhlis & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski & Hussain Bassi & Muhyaddin Jamal Hosin Rawa, 2018. "Transient Faults in Wind Energy Conversion Systems: Analysis, Modelling Methodologies and Remedies," Energies, MDPI, vol. 11(9), pages 1-33, August.
    16. Sun, Bohan & Gao, Ke & Liu, Shuai & Wei, Qiaoqiao & Wang, Hui, 2023. "Assessing the performance and economic viability of solar home systems: A way forward towards clean energy exploration and consumption," Renewable Energy, Elsevier, vol. 208(C), pages 409-419.
    17. Robert Olszewski & Piotr Pałka & Agnieszka Wendland & Jacek Kamiński, 2019. "A Multi-Agent Social Gamification Model to Guide Sustainable Urban Photovoltaic Panels Installation Policies," Energies, MDPI, vol. 12(15), pages 1-27, August.
    18. Zeb, Kamran & Uddin, Waqar & Khan, Muhammad Adil & Ali, Zunaib & Ali, Muhammad Umair & Christofides, Nicholas & Kim, H.J., 2018. "A comprehensive review on inverter topologies and control strategies for grid connected photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1120-1141.
    19. Tahir, Muhammad Faizan & Yousaf, Muhammad Zain & Tzes, Anthony & El Moursi, Mohamed Shawky & El-Fouly, Tarek H.M., 2024. "Enhanced solar photovoltaic power prediction using diverse machine learning algorithms with hyperparameter optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    20. Li, Peidu & Luo, Yong & Xia, Xin & Gao, Xiaoqing & Chang, Rui & Li, Zhenchao & Zheng, Junqing & Shi, Wen & Liao, Zhouyi, 2024. "Factors and quantitative impact on electrical yield in fishery complementary photovoltaic power plant under different cloud cover conditions," Energy, Elsevier, vol. 309(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4171-:d:1718823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.