IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p4138-d1717459.html
   My bibliography  Save this article

A Comprehensive Evaluation Method for Cement Slurry Systems to Enhance Zonal Isolation: A Case Study in Shale Oil Well Cementing

Author

Listed:
  • Xiaoqing Zheng

    (CNPC Daqing Drilling Engineering Company Limited, Daqing 163511, China)

  • Weitao Song

    (Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, China
    National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

  • Xiutian Yang

    (CNPC Daqing Drilling Engineering Company Limited, Daqing 163511, China)

  • Jian Liu

    (Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, China
    National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

  • Tao Jiang

    (CNPC Daqing Drilling Engineering Company Limited, Daqing 163511, China)

  • Xuning Wu

    (Petroleum Engineering School, Southwest Petroleum University, Chengdu 610500, China
    National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

  • Xin Liu

    (CNPC Daqing Drilling Engineering Company Limited, Daqing 163511, China)

Abstract

Due to post-cementing hydraulic fracturing and other operational stresses, inadequate mechanical properties or suboptimal design of the cement sheath can lead to tensile failure and microcrack development, compromising both hydrocarbon recovery and well integrity. In this study, three field-deployed cement slurry systems were compared on the basis of their basic mechanical properties such as compressive and tensile strength. Laboratory-scale physical simulations of hydraulic fracturing during shale oil production were conducted, using dynamic permeability as a quantitative indicator of integrity loss. The experimental results show that evaluating only basic mechanical properties is insufficient for cement slurry system design. A more comprehensive mechanical assessment is re-quired. Incorporation of an expansive agent into the cement slurry system can alleviate the damage caused by the microannulus to the interfacial sealing performance of the cement sheath, while adding a toughening agent can alleviate the damage caused by tensile cracks to the sealing performance of the cement sheath matrix. Through this research, a microexpansive and toughened cement slurry system, modified with both expansive and toughening agents, was optimized. The expansive agent and toughening agent can significantly enhance the shear strength, the flexural strength, and the interfacial hydraulic isolation strength of cement stone. Moreover, the expansion agents mitigate the detrimental effects of microannulus generation on the interfacial sealing, while the toughening agents alleviate the damage caused by tensile cracking to the bulk sealing performance of the cement sheath matrix. This system has been successfully implemented in over 100 wells in the GL block of Daqing Oilfield. Field application results show that the proportion of high-quality well sections in the horizontal section reached 88.63%, indicating the system’s high performance in enhancing zonal isolation and cementing quality.

Suggested Citation

  • Xiaoqing Zheng & Weitao Song & Xiutian Yang & Jian Liu & Tao Jiang & Xuning Wu & Xin Liu, 2025. "A Comprehensive Evaluation Method for Cement Slurry Systems to Enhance Zonal Isolation: A Case Study in Shale Oil Well Cementing," Energies, MDPI, vol. 18(15), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4138-:d:1717459
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/4138/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/4138/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Han, Xu & Feng, Fuping & Zhang, Jianwei, 2023. "Study on the whole life cycle integrity of cement interface in heavy oil thermal recovery well under circulating high temperature condition," Energy, Elsevier, vol. 278(PB).
    2. Bożena Gajdzik & Radosław Wolniak & Rafał Nagaj & Wieslaw Wes Grebski & Taras Romanyshyn, 2023. "Barriers to Renewable Energy Source (RES) Installations as Determinants of Energy Consumption in EU Countries," Energies, MDPI, vol. 16(21), pages 1-32, October.
    3. Santanu Kumar Dash & Suprava Chakraborty & Devaraj Elangovan, 2023. "A Brief Review of Hydrogen Production Methods and Their Challenges," Energies, MDPI, vol. 16(3), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bożena Gajdzik & Radosław Wolniak & Wiesław Grebski, 2025. "An Econometric Analysis of CO 2 Emission Intensity in Poland’s Blast Furnace–Basic Oxygen Furnace Steelmaking Process," Sustainability, MDPI, vol. 17(9), pages 1-30, April.
    2. Aleksandra Kuzior & Yevhen Kovalenko & Inna Tiutiunyk & Larysa Hrytsenko, 2025. "Assessment of the Energy Security of EU Countries in Light of the Expansion of Renewable Energy Sources," Energies, MDPI, vol. 18(8), pages 1-24, April.
    3. Iwona Bąk & Katarzyna Wawrzyniak & Maciej Oesterreich, 2024. "Assessment of Impact of Use of Renewable Energy Sources on Level of Energy Poverty in EU Countries," Energies, MDPI, vol. 17(24), pages 1-22, December.
    4. Marcela Taušová & Maksym Mykhei & Katarína Čulkova & Peter Tauš & Dávid Petráš & Pavol Kaňuch, 2025. "Development of the Implementation of Renewable Sources in EU Countries in Heating and Cooling, Transport, and Electricity," Sustainability, MDPI, vol. 17(2), pages 1-18, January.
    5. Ghaboulian Zare, Sara & Amirmoeini, Kamyar & Bahn, Olivier & Baker, Ryan C. & Mousseau, Normand & Neshat, Najmeh & Trépanier, Martin & Wang, Qianpu, 2025. "The role of hydrogen in integrated assessment models: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    6. Nihat Ege Sahin & W. J. Pech-Rodríguez & P. C. Meléndez-González & Juan Lopez Hernández & E. Rocha-Rangel, 2023. "Water Splitting as an Alternative for Electrochemical Hydrogen and Oxygen Generation: Current Status, Trends, and Challenges," Energies, MDPI, vol. 16(13), pages 1-25, June.
    7. Davide Clematis & Daria Bellotti & Massimo Rivarolo & Loredana Magistri & Antonio Barbucci, 2023. "Hydrogen Carriers: Scientific Limits and Challenges for the Supply Chain, and Key Factors for Techno-Economic Analysis," Energies, MDPI, vol. 16(16), pages 1-31, August.
    8. Artur Pawłowski & Agnieszka Żelazna & Jarosław Żak, 2023. "Is the Polish Solar-to-Hydrogen Pathway Green? A Carbon Footprint of AEM Electrolysis Hydrogen Based on an LCA," Energies, MDPI, vol. 16(9), pages 1-15, April.
    9. Bożena Gajdzik & Marcin Awdziej & Magdalena Jaciow & Ilona Lipowska & Marcin Lipowski & Grzegorz Szojda & Jolanta Tkaczyk & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2024. "Encouraging Residents to Save Energy by Using Smart Transportation: Incorporating the Propensity to Save Energy into the UTAUT Model," Energies, MDPI, vol. 17(21), pages 1-31, October.
    10. Shiva Zargar & Miyuru Kannangara & Giovanna Gonzales-Calienes & Jianjun Yang & Jalil Shadbahr & Cyrille Decès-Petit & Farid Bensebaa, 2024. "Data Hub for Life Cycle Assessment of Climate Change Solutions—Hydrogen Case Study," Data, MDPI, vol. 9(11), pages 1-18, November.
    11. Bożena Gajdzik & Radosław Wolniak & Anna Sączewska-Piotrowska & Wiesław Wes Grebski, 2025. "Polish Steel Production Under Conditions of Decarbonization—Steel Volume Forecasts Using Time Series and Multiple Linear Regression," Energies, MDPI, vol. 18(7), pages 1-38, March.
    12. Ahmad, Ejaz & Khan, Dilawar & Anser, Muhammad Khalid & Nassani, Abdelmohsen A. & Hassan, Syeda Anam & Zaman, Khalid, 2024. "The influence of grid connectivity, electricity pricing, policy-driven power incentives, and carbon emissions on renewable energy adoption: Exploring key factors," Renewable Energy, Elsevier, vol. 232(C).
    13. Ayiguzhali Tuluhong & Qingpu Chang & Lirong Xie & Zhisen Xu & Tengfei Song, 2024. "Current Status of Green Hydrogen Production Technology: A Review," Sustainability, MDPI, vol. 16(20), pages 1-47, October.
    14. Lu Wang & Zhijun Jin & Xiao Chen & Yutong Su & Xiaowei Huang, 2023. "The Origin and Occurrence of Natural Hydrogen," Energies, MDPI, vol. 16(5), pages 1-18, March.
    15. Ahmed I. Osman & Mahmoud Nasr & A. R. Mohamed & Amal Abdelhaleem & Ali Ayati & Mohamed Farghali & Ala'a H. Al‐Muhtaseb & Ahmed S. Al‐Fatesh & David W. Rooney, 2024. "Life cycle assessment of hydrogen production, storage, and utilization toward sustainability," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 13(3), May.
    16. Anna Król & Monika Gajec & Jadwiga Holewa-Rataj & Ewa Kukulska-Zając & Mateusz Rataj, 2024. "Hydrogen Purification Technologies in the Context of Its Utilization," Energies, MDPI, vol. 17(15), pages 1-38, August.
    17. Evgeny Solomin & Zaid Salah & Konstantin Osintsev & Sergei Aliukov & Sulpan Kuskarbekova & Vladimir Konchakov & Alyona Olinichenko & Alexander Karelin & Tatyana Tarasova, 2023. "Ecological Hydrogen Production and Water Sterilization: An Innovative Approach to the Trigeneration of Renewable Energy Sources for Water Desalination: A Review," Energies, MDPI, vol. 16(17), pages 1-32, August.
    18. Dhruv Singh & Piero Sirini & Lidia Lombardi, 2024. "Review of Reforming Processes for the Production of Green Hydrogen from Landfill Gas," Energies, MDPI, vol. 18(1), pages 1-35, December.
    19. Jimiao Zhang & Jie Li, 2024. "Revolution in Renewables: Integration of Green Hydrogen for a Sustainable Future," Energies, MDPI, vol. 17(16), pages 1-26, August.
    20. Zhidi Wu & Jason D. Simmons & Samuel Otu & Alex Rinehart & Andrew Luhmann & Jason Heath & Peter Mozley & Bhaskar S. Majumdar, 2023. "Control of Cement Timing, Mineralogy, and Texture on Hydro-chemo-mechanical Coupling from CO 2 Injection into Sandstone: A Synthesis," Energies, MDPI, vol. 16(24), pages 1-27, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4138-:d:1717459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.