IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p3966-d1709297.html
   My bibliography  Save this article

Hybrid Wind–Solar Generation and Analysis for Iberian Peninsula: A Case Study

Author

Listed:
  • Jesús Polo

    (Photovoltaic Solar Energy Unit (Energy Department, CIEMAT), Avda. Complutense 40, 28040 Madrid, Spain)

Abstract

Hybridization of solar and wind energy sources is a promising solution to enhance the dispatch capability of renewables. The complementarity of wind and solar radiation, as well as the sharing of transmission lines and other infrastructures, can notably benefit the deployment of renewable power. Mapping of hybrid solar–wind potential can help identify new emplacements or existing power facilities where an extension with a hybrid system might work. This paper presents an analysis of a hybrid solar–wind potential by considering a reference power plant of 40 MW in the Iberian Peninsula and comparing the hybrid and non-hybrid energy generated. The generation of energy is estimated using SAM for a typical meteorological year, using PVGIS and ERA5 meteorological information as input. Modeling the hybrid plant in relation to individual PV and wind power plants minimizes the dependence on technical and economic input data, allowing for the expression of potential hybridization analysis in relative numbers through maps. Correlation coefficient and capacity factor maps are presented here at different time scales, showing the complementarity in most of the spatial domain. In addition, economic analysis in comparison with non-hybrid power plants shows a reduction of around 25–30% in the LCOE in many areas of interest. Finally, a sizing sensitivity analysis is also performed to select the most beneficial sharing between PV and wind.

Suggested Citation

  • Jesús Polo, 2025. "Hybrid Wind–Solar Generation and Analysis for Iberian Peninsula: A Case Study," Energies, MDPI, vol. 18(15), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3966-:d:1709297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/3966/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/3966/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meysam Asadi & Kazem Pourhossein & Younes Noorollahi & Mousa Marzband & Gregorio Iglesias, 2023. "A New Decision Framework for Hybrid Solar and Wind Power Plant Site Selection Using Linear Regression Modeling Based on GIS-AHP," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
    2. Graça Gomes, João & Jiang, Juan & Chong, Cheng Tung & Telhada, João & Zhang, Xu & Sammarchi, Sergio & Wang, Shuyang & Lin, Yu & Li, Jialong, 2023. "Hybrid solar PV-wind-battery system bidding optimisation: A case study for the Iberian and Italian liberalised electricity markets," Energy, Elsevier, vol. 263(PD).
    3. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    4. Olauson, Jon, 2018. "ERA5: The new champion of wind power modelling?," Renewable Energy, Elsevier, vol. 126(C), pages 322-331.
    5. Costoya, X. & deCastro, M. & Carvalho, D. & Gómez-Gesteira, M., 2023. "Assessing the complementarity of future hybrid wind and solar photovoltaic energy resources for North America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    6. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren, 2019. "Spatial and temporal assessments of complementarity for renewable energy resources in China," Energy, Elsevier, vol. 177(C), pages 262-275.
    7. Fatemeh Shahnazian & Kaushik Das & Ruifeng Yan & Poul Sørensen, 2024. "Aspects of Relevance of Hybrid Power Plants in Control and Stability of Weak Grids," Energies, MDPI, vol. 17(24), pages 1-20, December.
    8. Gualtieri, G., 2022. "Analysing the uncertainties of reanalysis data used for wind resource assessment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Julio Manuel de Luis-Ruiz & Benito Ramiro Salas-Menocal & Raúl Pereda-García & Rubén Pérez-Álvarez & Javier Sedano-Cibrián & Carolina Ruiz-Fernández, 2024. "Optimal Location of Solar Photovoltaic Plants Using Geographic Information Systems and Multi-Criteria Analysis," Sustainability, MDPI, vol. 16(7), pages 1-22, March.
    10. Monforti, F. & Huld, T. & Bódis, K. & Vitali, L. & D'Isidoro, M. & Lacal-Arántegui, R., 2014. "Assessing complementarity of wind and solar resources for energy production in Italy. A Monte Carlo approach," Renewable Energy, Elsevier, vol. 63(C), pages 576-586.
    11. Ferreira, Miguel Marques & Santos, Júlia Alves & Silva, Lincon Rozendo da & Abrahao, Raphael & Gomes, Flavio da Silva Vitorino & Braz, Helon David Macêdo, 2023. "A new index to evaluate renewable energy potential: A case study on solar, wind and hybrid generation in Northeast Brazil," Renewable Energy, Elsevier, vol. 217(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaomei Ma & Yongqian Liu & Jie Yan & Han Wang, 2023. "A WGAN-GP-Based Scenarios Generation Method for Wind and Solar Power Complementary Study," Energies, MDPI, vol. 16(7), pages 1-20, March.
    2. Berger, Mathias & Radu, David & Fonteneau, Raphaël & Henry, Robin & Glavic, Mevludin & Fettweis, Xavier & Le Du, Marc & Panciatici, Patrick & Balea, Lucian & Ernst, Damien, 2020. "Critical time windows for renewable resource complementarity assessment," Energy, Elsevier, vol. 198(C).
    3. Pedruzzi, Rizzieri & Silva, Allan Rodrigues & Soares dos Santos, Thalyta & Araujo, Allan Cavalcante & Cotta Weyll, Arthur Lúcide & Lago Kitagawa, Yasmin Kaore & Nunes da Silva Ramos, Diogo & Milani de, 2023. "Review of mapping analysis and complementarity between solar and wind energy sources," Energy, Elsevier, vol. 283(C).
    4. Bai, Mingqi & Liu, Shuqi & Qi, Meng & Liu, Shangzhi & Shu, Chi-Min & Feng, Wei & Liu, Yi, 2024. "Optimization of wind-solar hybrid system based on energy stability of multiple time scales and uncertainty of renewable resources," Energy, Elsevier, vol. 313(C).
    5. Hayes, Liam & Stocks, Matthew & Blakers, Andrew, 2021. "Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis," Energy, Elsevier, vol. 229(C).
    6. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    7. Huang, Kangdi & Luo, Peng & Liu, Pan & KIM, Jong Suk & Wang, Yintang & Xu, Weifeng & Li, He & Gong, Yu, 2022. "Improving complementarity of a hybrid renewable energy system to meet load demand by using hydropower regulation ability," Energy, Elsevier, vol. 248(C).
    8. Neto, Pedro Bezerra Leite & Saavedra, Osvaldo R. & Oliveira, Denisson Q., 2020. "The effect of complementarity between solar, wind and tidal energy in isolated hybrid microgrids," Renewable Energy, Elsevier, vol. 147(P1), pages 339-355.
    9. Karadöl, İsrafil & Yıldız, Ceyhun & Şekkeli, Mustafa, 2021. "Determining optimal spatial and temporal complementarity between wind and hydropower," Energy, Elsevier, vol. 230(C).
    10. Gao, Yang & Meng, Yangyang & Dong, Guanpeng & Ma, Shaoxiu & Miao, Changhong & Xiao, Jianhua & Mao, Shuting & Shao, Lili, 2024. "The wind-solar hybrid energy could serve as a stable power source at multiple time scale in China mainland," Energy, Elsevier, vol. 305(C).
    11. Lindberg, O. & Lingfors, D. & Arnqvist, J., 2022. "Analyzing the mechanisms behind temporal correlation between power sources using frequency separated time scales: A Swedish case study on PV and wind," Energy, Elsevier, vol. 259(C).
    12. Hui Zhao & Hongru Zang, 2025. "Site Selection for Solar–Wind Hybrid Energy Storage Plants Based on Triangular Fuzzy Numbers: A Case Study of China," Energies, MDPI, vol. 18(14), pages 1-25, July.
    13. Gruber, Katharina & Regner, Peter & Wehrle, Sebastian & Zeyringer, Marianne & Schmidt, Johannes, 2022. "Towards global validation of wind power simulations: A multi-country assessment of wind power simulation from MERRA-2 and ERA-5 reanalyses bias-corrected with the global wind atlas," Energy, Elsevier, vol. 238(PA).
    14. Gao, Yang & Ma, Shaoxiu & Wang, Tao & Miao, Changhong & Yang, Fan, 2022. "Distributed onshore wind farm siting using intelligent optimization algorithm based on spatial and temporal variability of wind energy," Energy, Elsevier, vol. 258(C).
    15. Chen, Zhuo & Li, Wei & Wang, Xiaoxuan & Bai, Jingjie & Wang, Xiuquan & Guo, Junhong, 2024. "Evaluating wind and solar complementarity in China: Considering climate change and source-load matching dynamics," Energy, Elsevier, vol. 312(C).
    16. Henao, Felipe & Viteri, Juan P. & Rodríguez, Yeny & Gómez, Juan & Dyner, Isaac, 2020. "Annual and interannual complementarities of renewable energy sources in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    17. Diana Cantor & Andrés Ochoa & Oscar Mesa, 2022. "Total Variation-Based Metrics for Assessing Complementarity in Energy Resources Time Series," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    18. José Rafael Dorrego Portela & Geovanni Hernández Galvez & Quetzalcoatl Hernandez-Escobedo & Ricardo Saldaña Flores & Omar Sarracino Martínez & Orlando Lastres Danguillecourt & Pascual López de Paz & A, 2022. "Microscale Wind Assessment, Comparing Mesoscale Information and Observed Wind Data," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
    19. Liang Ma & Shigong Jiang & Yi Song & Chenyi Si & Xiaohan Li, 2025. "Multi-Time Scale Scenario Generation for Source–Load Modeling Through Temporal Generative Adversarial Networks," Energies, MDPI, vol. 18(6), pages 1-18, March.
    20. Dichen Liu & Chenxu Wang & Fei Tang & Yixi Zhou, 2020. "Probabilistic Assessment of Hybrid Wind-PV Hosting Capacity in Distribution Systems," Sustainability, MDPI, vol. 12(6), pages 1-19, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3966-:d:1709297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.