IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3751-d1702201.html
   My bibliography  Save this article

A Data-Driven Observer for Wind Farm Power Gain Potential: A Sparse Koopman Operator Approach

Author

Listed:
  • Yue Chen

    (Power Dispatch Control Center, Guangdong Power Grid Company Ltd., Guangzhou 523000, China)

  • Bingchen Wang

    (Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

  • Kaiyue Zeng

    (Power Dispatch Control Center, Guangdong Power Grid Company Ltd., Guangzhou 523000, China)

  • Lifu Ding

    (Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

  • Yingming Lin

    (Power Dispatch Control Center, Guangdong Power Grid Company Ltd., Guangzhou 523000, China)

  • Ying Chen

    (Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

  • Qiuyu Lu

    (Power Dispatch Control Center, Guangdong Power Grid Company Ltd., Guangzhou 523000, China)

Abstract

Maximizing the power output of wind farms is critical for improving the economic viability and grid integration of renewable energy. Active wake control (AWC) strategies, such as yaw-based wake steering, offer significant potential for power generation increase but require predictive models that are both accurate and computationally efficient for real-time implementation. This paper proposes a data-driven observer to rapidly estimate the potential power gain achievable through AWC as a function of the ambient wind direction. The approach is rooted in Koopman operator theory, which allows a linear representation of nonlinear dynamics. Specifically, a model is developed using an Input–Output Extended Dynamic Mode Decomposition framework combined with Sparse Identification (IOEDMDSINDy). This method lifts the low-dimensional wind direction input into a high-dimensional space of observable functions and then employs iterative sparse regression to identify a minimal, interpretable linear model in this lifted space. By training on offline simulation data, the resulting observer serves as an ultra-fast surrogate model, capable of providing instantaneous predictions to inform online control decisions. The methodology is demonstrated and its performance is validated using two case studies: a 9-turbine and a 20-turbine wind farm. The results show that the observer accurately captures the complex, nonlinear relationship between wind direction and power gain, significantly outperforming simpler models. This work provides a key enabling technology for advanced, real-time wind farm control systems.

Suggested Citation

  • Yue Chen & Bingchen Wang & Kaiyue Zeng & Lifu Ding & Yingming Lin & Ying Chen & Qiuyu Lu, 2025. "A Data-Driven Observer for Wind Farm Power Gain Potential: A Sparse Koopman Operator Approach," Energies, MDPI, vol. 18(14), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3751-:d:1702201
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3751/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3751/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Archer, Cristina L. & Vasel-Be-Hagh, Ahmadreza & Yan, Chi & Wu, Sicheng & Pan, Yang & Brodie, Joseph F. & Maguire, A. Eoghan, 2018. "Review and evaluation of wake loss models for wind energy applications," Applied Energy, Elsevier, vol. 226(C), pages 1187-1207.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    2. Pollini, Nicolò, 2022. "Topology optimization of wind farm layouts," Renewable Energy, Elsevier, vol. 195(C), pages 1015-1027.
    3. Tian, Sheng & Liu, Yongqian & Tian, Xinshou & Li, Baoliang & Chi, Yongning, 2024. "A wind farm control strategy for frequency regulation reserve: Optimize wake loss and frequency support capability," Renewable Energy, Elsevier, vol. 237(PB).
    4. Abdullah Al-Shereiqi & Amer Al-Hinai & Mohammed Albadi & Rashid Al-Abri, 2021. "Optimal Sizing of Hybrid Wind-Solar Power Systems to Suppress Output Fluctuation," Energies, MDPI, vol. 14(17), pages 1-16, August.
    5. Tian, Linlin & Song, Yilei & Wang, Zhenming & Zhao, Ning & Zhu, Chunling & Lu, Xiyun, 2024. "Predictive capability of an improved AD/RANS method for multiple wind turbines and wind farm wakes," Energy, Elsevier, vol. 297(C).
    6. Gu, Bo & Meng, Hang & Ge, Mingwei & Zhang, Hongtao & Liu, Xinyu, 2021. "Cooperative multiagent optimization method for wind farm power delivery maximization," Energy, Elsevier, vol. 233(C).
    7. Joongjin Shin & Seokheum Baek & Youngwoo Rhee, 2020. "Wind Farm Layout Optimization Using a Metamodel and EA/PSO Algorithm in Korea Offshore," Energies, MDPI, vol. 14(1), pages 1-15, December.
    8. Luis M. López-Manrique & E. V. Macias-Melo & O. May Tzuc & A. Bassam & K. M. Aguilar-Castro & I. Hernández-Pérez, 2018. "Assessment of Resource and Forecast Modeling of Wind Speed through An Evolutionary Programming Approach for the North of Tehuantepec Isthmus (Cuauhtemotzin, Mexico)," Energies, MDPI, vol. 11(11), pages 1-22, November.
    9. Wang, Tengyuan & Cai, Chang & Wang, Xinbao & Wang, Zekun & Chen, Yewen & Song, Juanjuan & Xu, Jianzhong & Zhang, Yuning & Li, Qingan, 2023. "A new Gaussian analytical wake model validated by wind tunnel experiment and LiDAR field measurements under different turbulent flow," Energy, Elsevier, vol. 271(C).
    10. Sun, Haiying & Qiu, Changyu & Lu, Lin & Gao, Xiaoxia & Chen, Jian & Yang, Hongxing, 2020. "Wind turbine power modelling and optimization using artificial neural network with wind field experimental data," Applied Energy, Elsevier, vol. 280(C).
    11. Ye, Shitong & Wang, Qiang & Mu, Yanfei & Luo, Kun & Fan, Jianren, 2024. "Loads and fatigue characteristics assessment of wind farm based on dynamic wake meandering model," Renewable Energy, Elsevier, vol. 236(C).
    12. Zhang, Ziyu & Huang, Peng, 2023. "Prediction of multiple-wake velocity and wind power using a cosine-shaped wake model," Renewable Energy, Elsevier, vol. 219(P1).
    13. Wu, Yan & Zhang, Shuai & Wang, Ruiqi & Wang, Yufei & Feng, Xiao, 2020. "A design methodology for wind farm layout considering cable routing and economic benefit based on genetic algorithm and GeoSteiner," Renewable Energy, Elsevier, vol. 146(C), pages 687-698.
    14. Angel G. Gonzalez-Rodriguez & Javier Serrano-González & Manuel Burgos-Payán & Jesús Manuel Riquelme-Santos, 2021. "Realistic Optimization of Parallelogram-Shaped Offshore Wind Farms Considering Continuously Distributed Wind Resources," Energies, MDPI, vol. 14(10), pages 1-20, May.
    15. Wu, Yan & Xia, Tianqi & Wang, Yufei & Zhang, Haoran & Feng, Xiao & Song, Xuan & Shibasaki, Ryosuke, 2022. "A synchronization methodology for 3D offshore wind farm layout optimization with multi-type wind turbines and obstacle-avoiding cable network," Renewable Energy, Elsevier, vol. 185(C), pages 302-320.
    16. Michael F. Howland & John O. Dabiri, 2020. "Influence of Wake Model Superposition and Secondary Steering on Model-Based Wake Steering Control with SCADA Data Assimilation," Energies, MDPI, vol. 14(1), pages 1-20, December.
    17. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Wake model for horizontal-axis wind and hydrokinetic turbines in yawed conditions," Applied Energy, Elsevier, vol. 242(C), pages 1383-1395.
    18. Dhiman, Harsh S. & Deb, Dipankar & Foley, Aoife M., 2020. "Bilateral Gaussian Wake Model Formulation for Wind Farms: A Forecasting based approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    19. Shid-Moosavi, Sina & Di Cioccio, Fabrizio & Haghi, Rad & Tronci, Eleonora Maria & Moaveni, Babak & Liberatore, Sauro & Hines, Eric, 2025. "Modeling and experimentally-driven sensitivity analysis of wake-induced power loss in offshore wind farms: Insights from Block Island Wind Farm," Renewable Energy, Elsevier, vol. 241(C).
    20. Ma, Xiaojuan & Wu, Xinghong & Wu, Yan & Wang, Yufei, 2023. "Energy system design of offshore natural gas hydrates mining platforms considering multi-period floating wind farm optimization and production profile fluctuation," Energy, Elsevier, vol. 265(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3751-:d:1702201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.