IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3583-d1696572.html
   My bibliography  Save this article

Operation Optimization of a Combined Heat and Power Plant Integrated with Flexibility Retrofits in the Electricity Market

Author

Listed:
  • Hongjin Chen

    (School of Nuclear Science, Energy and Power Engineering, Shandong University, Jinan 250061, China)

  • Jiwei Song

    (Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China)

Abstract

Enhancing the load-adjustment flexibility of combined heat and power units facilitates the integration of renewable energy and enhances their profitability in dynamic electricity markets. However, the optimal coordination of various retrofitted combined heat and power units to maximize profitability has not been thoroughly investigated. To address this gap, this study conducts thermodynamic analysis and operation optimization for a combined heat and power plant integrated with flexibility retrofits, by developing models for the extraction-condensing unit, high back-pressure retrofitted unit, and low-pressure turbine zero output retrofitted unit. Results show that the low-pressure turbine zero output retrofitted unit achieves the largest energy efficiency (90.7%), while the extraction-condensing unit attains the highest exergy efficiency (38.0%). A plant-level optimization model is proposed to maximize profitability, demonstrating that the retrofitted combined heat and power plant increases total profit by 8.1% (CNY 86.4 million) compared to the original plant (CNY 79.9 million). The profit improvement stems from reduced coal consumption and enhanced heating capacity, enabling better power generation optimization. Furthermore, the study evaluates the profitability under different retrofit combinations. The findings reveal that an optimal profit can be achieved by reasonably coordinating the energy-saving characteristics of high back-pressure units, the heat supply capacity of low-pressure turbine zero output units, and the flexible adjustment capability of extraction-condensing units.

Suggested Citation

  • Hongjin Chen & Jiwei Song, 2025. "Operation Optimization of a Combined Heat and Power Plant Integrated with Flexibility Retrofits in the Electricity Market," Energies, MDPI, vol. 18(13), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3583-:d:1696572
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3583/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3583/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Runchen & Du, Xiaonan & Shi, Yuetao & Deng, Weipeng & Wang, Yuhao & Sun, Fengzhong, 2024. "A novel system for reducing power plant electricity consumption and enhancing deep peak-load capability," Energy, Elsevier, vol. 295(C).
    2. Hou, Guolian & Fan, Yuzhen & Wang, Junjie, 2024. "Intelligent fuzzy neural network modeling for flexible operation of combined heat and power plant with heat-power decoupling technology," Energy, Elsevier, vol. 309(C).
    3. Wang, Zhenpu & Xu, Jing & Ma, Suxia & Zhao, Guanjia & Wang, Jianfei & Gu, Yujiong, 2025. "Comparative investigation on heat pump solutions for peak shaving and heat-power decoupling in combined heat and power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    4. Li, Jiajia & Li, Xingshuo & Yan, Peigang & Zhou, Guowen & Liu, Jinfu & Yu, Daren, 2023. "Thermodynamics, flexibility and techno-economics assessment of a novel integration of coal-fired combined heating and power generation unit and compressed air energy storage," Applied Energy, Elsevier, vol. 339(C).
    5. Shifei Zhao & Weishu Wang & Zhihua Ge, 2020. "Energy and Exergy Evaluations of a Combined Heat and Power System with a High Back-Pressure Turbine under Full Operating Conditions," Energies, MDPI, vol. 13(17), pages 1-18, August.
    6. Wang, Liyuan & Zhang, Shunqi & Fu, Yue & Liu, Ming & Liu, Jiping & Yan, Junjie, 2024. "Heat–power decoupling for the CHP unit by utilizing heat storage in the district heating system integrated with heat pumps: Dynamic modeling and performance analysis," Energy, Elsevier, vol. 306(C).
    7. Liu, Ming & Wang, Shan & Zhao, Yongliang & Tang, Haiyu & Yan, Junjie, 2019. "Heat–power decoupling technologies for coal-fired CHP plants: Operation flexibility and thermodynamic performance," Energy, Elsevier, vol. 188(C).
    8. Wang, Wei & Jing, Sitong & Sun, Yang & Liu, Jizhen & Niu, Yuguang & Zeng, Deliang & Cui, Can, 2019. "Combined heat and power control considering thermal inertia of district heating network for flexible electric power regulation," Energy, Elsevier, vol. 169(C), pages 988-999.
    9. Ma, Liqun & Ge, Zhihua & Zhang, Fuxiang & Wei, Huimin, 2020. "A novel super high back pressure cascade heating scheme with multiple large-scale turbine units," Energy, Elsevier, vol. 201(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Congyu & Song, Jiwei, 2023. "Performance assessment of the novel coal-fired combined heat and power plant integrating with flexibility renovations," Energy, Elsevier, vol. 263(PC).
    2. Wang, Zhenpu & Xu, Jing & Ma, Suxia & Zhao, Guanjia & Wang, Jianfei & Gu, Yujiong, 2025. "Comparative investigation on heat pump solutions for peak shaving and heat-power decoupling in combined heat and power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    3. Hou, Guolian & Gong, Linjuan & Hu, Bo & Huang, Ting & Su, Huilin & Huang, Congzhi & Zhou, Guiping & Wang, Shunjiang, 2022. "Flexibility oriented adaptive modeling of combined heat and power plant under various heat-power coupling conditions," Energy, Elsevier, vol. 242(C).
    4. Wang, Di & Liu, Deying & Wang, Chaonan & Zhou, Yunlong & Li, Xiaoli & Yang, Mei, 2022. "Flexibility improvement method of coal-fired thermal power plant based on the multi-scale utilization of steam turbine energy storage," Energy, Elsevier, vol. 239(PD).
    5. Wu, Chunlei & Wang, Chao & Hou, Zongyu & Wang, Zhe, 2025. "Flexible peak shaving in coal-fired power plants: A comprehensive review of current challenges, recent advances, and future perspectives," Energy, Elsevier, vol. 327(C).
    6. Wang, Wei & Xie, Xinyan & Yu, Wei & Hu, Yong & Zeng, Deliang, 2024. "Flexible heat and power load control of subcritical heating units based on energy demand-supply balance," Energy, Elsevier, vol. 313(C).
    7. Yuliang Dong & Songyuan Yu & Chengbing He & Qingbin Yu & Fang Fang, 2022. "Optimal Multi-Mode Flexibility Operation of CHP Units with Electrode Type Electric Boilers: A Case Study," Energies, MDPI, vol. 15(24), pages 1-21, December.
    8. Junshan Guo & Wei Zheng & Zhuang Cong & Panfeng Shang & Congyu Wang & Jiwei Song, 2021. "Steam-Water Modelling and the Coal-Saving Scheduling Strategy of Combined Heat and Power Systems," Energies, MDPI, vol. 15(1), pages 1-16, December.
    9. Garcet, J. & De Meulenaere, R. & Blondeau, J., 2022. "Enabling flexible CHP operation for grid support by exploiting the DHN thermal inertia," Applied Energy, Elsevier, vol. 316(C).
    10. Jiang, Mengxiang & Fan, Huanbao & Kang, Da & Shi, Zhengwei & Wang, Weilai & Qu, Daozhi & Yu, Jingze & Qiu, Tian, 2025. "Thermal inertia and stress of steam separator during variable load process based on fluid-structure-heat coupling," Energy, Elsevier, vol. 322(C).
    11. Zhang, Youjun & Xiong, Nian & Ge, Zhihua & Zhang, Yichen & Hao, Junhong & Yang, Zhiping, 2020. "A novel cascade heating system for waste heat recovery in the combined heat and power plant integrating with the steam jet pump," Applied Energy, Elsevier, vol. 278(C).
    12. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    13. Zhang, Youjun & Hao, Junhong & Ge, Zhihua & Zhang, Fuxiang & Du, Xiaoze, 2021. "Optimal clean heating mode of the integrated electricity and heat energy system considering the comprehensive energy-carbon price," Energy, Elsevier, vol. 231(C).
    14. Li, Xin & Wu, Xian & Gui, De & Hua, Yawen & Guo, Panfeng, 2021. "Power system planning based on CSP-CHP system to integrate variable renewable energy," Energy, Elsevier, vol. 232(C).
    15. Liu, Miaomiao & Liu, Ming & Chen, Weixiong & Yan, Junjie, 2023. "Operational flexibility and operation optimization of CHP units supplying electricity and two-pressure steam," Energy, Elsevier, vol. 263(PE).
    16. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Hu, Songtao & Wang, Jinda, 2021. "Effects of intermittent heating on an integrated heat and power dispatch system for wind power integration and corresponding operation regulation," Applied Energy, Elsevier, vol. 287(C).
    17. Dongwen Chen & Zheng Chu, 2024. "Enhancing Power Supply Flexibility in Renewable Energy Systems with Optimized Energy Dispatch in Coupled CHP, Heat Pump, and Thermal Storage," Energies, MDPI, vol. 17(12), pages 1-29, June.
    18. Chen, Dongwen & Li, Yong & Abbas, Zulkarnain & Li, Dehong & Wang, Ruzhu, 2022. "Network flow calculation based on the directional nodal potential method for meshed heating networks," Energy, Elsevier, vol. 243(C).
    19. Tongu, Daiki & Obara, Shin'ya, 2024. "Formation temperature range expansion and energy storage properties of CO2 hydrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    20. Shifei Zhao & Weishu Wang & Zhihua Ge, 2020. "Energy and Exergy Evaluations of a Combined Heat and Power System with a High Back-Pressure Turbine under Full Operating Conditions," Energies, MDPI, vol. 13(17), pages 1-18, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3583-:d:1696572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.