Author
Listed:
- Andrea Mariscotti
(Department of Electrical, Electronic and Telecommunications Engineering, and Naval Architecture (DITEN), University of Genova, 16145 Genova, Italy)
- Rafael S. Salles
(Electric Power Engineering Group, Luleå University of Technology, 93187 Skellefteå, Sweden)
- Sarah K. Rönnberg
(Electric Power Engineering Group, Luleå University of Technology, 93187 Skellefteå, Sweden)
Abstract
Non-active current in the time domain is considered for application to the diagnostics and classification of loads in power grids based on waveform-distortion characteristics, taking as a working example several recordings of the pantograph current in an AC railway system. Data are processed with a deep autoencoder for feature extraction and then clustered via k-means to allow identification of patterns in the latent space. Clustering enables the evaluation of the relationship between the physical meaning and operation of the system and the distortion phenomena emerging in the waveforms during operation. Euclidean distance (ED) is used to measure the diversity and pertinence of observations within pattern groups and to identify anomalies (abnormal distortion, transients, …). This approach allows the classification of new data by assigning data to clusters based on proximity to centroids. This unsupervised method exploiting non-active current is novel and has proven useful for providing data with labels for later supervised learning performed with the 1D-CNN, which achieved a balanced accuracy of 96.46% under normal conditions. ED and 1D-CNN methods were tested on an additional unlabeled dataset and achieved 89.56% agreement in identifying normal states. Additionally, Grad-CAM, when applied to the 1D-CNN, quantitatively identifies the waveform parts that influence the model predictions, significantly enhancing the interpretability of the classification results. This is particularly useful for obtaining a better understanding of load operation, including anomalies that affect grid stability and energy efficiency. Finally, the method has been also successfully further validated for general applicability with data from a different scenario (charging of electric vehicles). The method can be applied to load identification and classification for non-intrusive load monitoring, with the aim of implementing automatic and unsupervised assessment of load behavior, including transient detection, power-quality issues and improvement in energy efficiency.
Suggested Citation
Andrea Mariscotti & Rafael S. Salles & Sarah K. Rönnberg, 2025.
"Unsupervised Segmentation and Classification of Waveform-Distortion Data Using Non-Active Current,"
Energies, MDPI, vol. 18(13), pages 1-27, July.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:13:p:3536-:d:1694629
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3536-:d:1694629. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.