IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3536-d1694629.html
   My bibliography  Save this article

Unsupervised Segmentation and Classification of Waveform-Distortion Data Using Non-Active Current

Author

Listed:
  • Andrea Mariscotti

    (Department of Electrical, Electronic and Telecommunications Engineering, and Naval Architecture (DITEN), University of Genova, 16145 Genova, Italy)

  • Rafael S. Salles

    (Electric Power Engineering Group, Luleå University of Technology, 93187 Skellefteå, Sweden)

  • Sarah K. Rönnberg

    (Electric Power Engineering Group, Luleå University of Technology, 93187 Skellefteå, Sweden)

Abstract

Non-active current in the time domain is considered for application to the diagnostics and classification of loads in power grids based on waveform-distortion characteristics, taking as a working example several recordings of the pantograph current in an AC railway system. Data are processed with a deep autoencoder for feature extraction and then clustered via k-means to allow identification of patterns in the latent space. Clustering enables the evaluation of the relationship between the physical meaning and operation of the system and the distortion phenomena emerging in the waveforms during operation. Euclidean distance (ED) is used to measure the diversity and pertinence of observations within pattern groups and to identify anomalies (abnormal distortion, transients, …). This approach allows the classification of new data by assigning data to clusters based on proximity to centroids. This unsupervised method exploiting non-active current is novel and has proven useful for providing data with labels for later supervised learning performed with the 1D-CNN, which achieved a balanced accuracy of 96.46% under normal conditions. ED and 1D-CNN methods were tested on an additional unlabeled dataset and achieved 89.56% agreement in identifying normal states. Additionally, Grad-CAM, when applied to the 1D-CNN, quantitatively identifies the waveform parts that influence the model predictions, significantly enhancing the interpretability of the classification results. This is particularly useful for obtaining a better understanding of load operation, including anomalies that affect grid stability and energy efficiency. Finally, the method has been also successfully further validated for general applicability with data from a different scenario (charging of electric vehicles). The method can be applied to load identification and classification for non-intrusive load monitoring, with the aim of implementing automatic and unsupervised assessment of load behavior, including transient detection, power-quality issues and improvement in energy efficiency.

Suggested Citation

  • Andrea Mariscotti & Rafael S. Salles & Sarah K. Rönnberg, 2025. "Unsupervised Segmentation and Classification of Waveform-Distortion Data Using Non-Active Current," Energies, MDPI, vol. 18(13), pages 1-27, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3536-:d:1694629
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3536/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3536/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yue Shen & Muhammad Abubakar & Hui Liu & Fida Hussain, 2019. "Power Quality Disturbance Monitoring and Classification Based on Improved PCA and Convolution Neural Network for Wind-Grid Distribution Systems," Energies, MDPI, vol. 12(7), pages 1-26, April.
    2. Qiujiang Liu & Wanqi Zhang & Guotao Cao & Jingwei Liu & Jingjing Ye & Mingli Wu & Shaobing Yang, 2022. "Influence of the Catenary Distributed Parameters on the Resonance Frequencies of Electric Railways Based on Quantitative Calculation and Field Tests," Energies, MDPI, vol. 15(10), pages 1-17, May.
    3. Wang, Shouxiang & Chen, Haiwen, 2019. "A novel deep learning method for the classification of power quality disturbances using deep convolutional neural network," Applied Energy, Elsevier, vol. 235(C), pages 1126-1140.
    4. Yaroslav Shklyarskiy & Zbigniew Hanzelka & Aleksandr Skamyin, 2020. "Experimental Study of Harmonic Influence on Electrical Energy Metering," Energies, MDPI, vol. 13(21), pages 1-13, October.
    5. Rafael S. Salles & Sarah K. Rönnberg, 2023. "Review of Waveform Distortion Interactions Assessment in Railway Power Systems," Energies, MDPI, vol. 16(14), pages 1-33, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Babak Sadeghi & Per Westerlund & Manav Giri & Math Bollen, 2024. "Analysis of the Measurements of the Radiated Emission from 9 kHz to 150 kHz from Electric Railways," Energies, MDPI, vol. 17(19), pages 1-18, October.
    2. Artvin-Darien Gonzalez-Abreu & Miguel Delgado-Prieto & Roque-Alfredo Osornio-Rios & Juan-Jose Saucedo-Dorantes & Rene-de-Jesus Romero-Troncoso, 2021. "A Novel Deep Learning-Based Diagnosis Method Applied to Power Quality Disturbances," Energies, MDPI, vol. 14(10), pages 1-17, May.
    3. Zakarya Oubrahim & Yassine Amirat & Mohamed Benbouzid & Mohammed Ouassaid, 2023. "Power Quality Disturbances Characterization Using Signal Processing and Pattern Recognition Techniques: A Comprehensive Review," Energies, MDPI, vol. 16(6), pages 1-41, March.
    4. Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    5. Artvin-Darien Gonzalez-Abreu & Roque-Alfredo Osornio-Rios & Arturo-Yosimar Jaen-Cuellar & Miguel Delgado-Prieto & Jose-Alfonso Antonino-Daviu & Athanasios Karlis, 2022. "Advances in Power Quality Analysis Techniques for Electrical Machines and Drives: A Review," Energies, MDPI, vol. 15(5), pages 1-26, March.
    6. Shao, Han & Henriques, Rui & Morais, Hugo & Tedeschi, Elisabetta, 2024. "Power quality monitoring in electric grid integrating offshore wind energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    7. Cheng-I Chen & Sunneng Sandino Berutu & Yeong-Chin Chen & Hao-Cheng Yang & Chung-Hsien Chen, 2022. "Regulated Two-Dimensional Deep Convolutional Neural Network-Based Power Quality Classifier for Microgrid," Energies, MDPI, vol. 15(7), pages 1-16, March.
    8. Arafat, M.Y. & Hossain, M.J. & Alam, Md Morshed, 2024. "Machine learning scopes on microgrid predictive maintenance: Potential frameworks, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    9. Enrique Reyes-Archundia & Wuqiang Yang & Jose A. Gutiérrez Gnecchi & Javier Rodríguez-Herrejón & Juan C. Olivares-Rojas & Aldo V. Rico-Medina, 2024. "Effect of Phase Shifting on Real-Time Detection and Classification of Power Quality Disturbances," Energies, MDPI, vol. 17(10), pages 1-14, May.
    10. Paula Remigio-Carmona & Juan-José González-de-la-Rosa & Olivia Florencias-Oliveros & José-María Sierra-Fernández & Javier Fernández-Morales & Manuel-Jesús Espinosa-Gavira & Agustín Agüera-Pérez & José, 2022. "Current Status and Future Trends of Power Quality Analysis," Energies, MDPI, vol. 15(7), pages 1-18, March.
    11. Juan-José González de-la-Rosa & Manuel Pérez-Donsión, 2020. "Special Issue “Analysis for Power Quality Monitoring”," Energies, MDPI, vol. 13(3), pages 1-6, January.
    12. Zahoor Ali Khan & Muhammad Adil & Nadeem Javaid & Malik Najmus Saqib & Muhammad Shafiq & Jin-Ghoo Choi, 2020. "Electricity Theft Detection Using Supervised Learning Techniques on Smart Meter Data," Sustainability, MDPI, vol. 12(19), pages 1-25, September.
    13. Tomasz Pajchrowski & Michał Krystkowiak & Dominik Matecki, 2021. "Modulation Variants in DC Circuits of Power Rectifier Systems with Improved Quality of Energy Conversion—Part I," Energies, MDPI, vol. 14(7), pages 1-18, March.
    14. Peng Zhou & Yanliang Xu & Wenji Zhang, 2023. "Design Consideration on a Low-Cost Permanent Magnetization Remanufacturing Method for Low-Efficiency Induction Motors," Energies, MDPI, vol. 16(17), pages 1-22, August.
    15. Do-In Kim, 2021. "Complementary Feature Extractions for Event Identification in Power Systems Using Multi-Channel Convolutional Neural Network," Energies, MDPI, vol. 14(15), pages 1-15, July.
    16. Ren, Tao & Modest, Michael F. & Fateev, Alexander & Sutton, Gavin & Zhao, Weijie & Rusu, Florin, 2019. "Machine learning applied to retrieval of temperature and concentration distributions from infrared emission measurements," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    17. Xiao, Tianqi & You, Fengqi, 2023. "Building thermal modeling and model predictive control with physically consistent deep learning for decarbonization and energy optimization," Applied Energy, Elsevier, vol. 342(C).
    18. Li, Jianbin & Chen, Zhiqiang & Cheng, Long & Liu, Xiufeng, 2022. "Energy data generation with Wasserstein Deep Convolutional Generative Adversarial Networks," Energy, Elsevier, vol. 257(C).
    19. Noor Hussain & Mashood Nasir & Juan Carlos Vasquez & Josep M. Guerrero, 2020. "Recent Developments and Challenges on AC Microgrids Fault Detection and Protection Systems–A Review," Energies, MDPI, vol. 13(9), pages 1-31, May.
    20. Minan Tang & Hongjie Wang & Jiandong Qiu & Zhanglong Tao & Tong Yang, 2024. "Classification of offshore wind grid-connected power quality disturbances based on fast S-transform and CPO-optimized convolutional neural network," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-27, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3536-:d:1694629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.