IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3500-d1693358.html
   My bibliography  Save this article

Research on the Operation Optimisation of Integrated Energy System Based on Multiple Thermal Inertia

Author

Listed:
  • Huiqiang Zhi

    (State Grid Shanxi Electric Power Company Electric Power Research Institute, Taiyuan 030001, China)

  • Min Zhang

    (State Grid Shanxi Electric Power Company Electric Power Research Institute, Taiyuan 030001, China)

  • Xiao Chang

    (State Grid Shanxi Electric Power Company Electric Power Research Institute, Taiyuan 030001, China)

  • Rui Fan

    (State Grid Shanxi Electric Power Company Electric Power Research Institute, Taiyuan 030001, China)

  • Huipeng Li

    (State Grid Shanxi Electric Power Company Electric Power Research Institute, Taiyuan 030001, China)

  • Le Gao

    (State Grid Shanxi Electric Power Company Electric Power Research Institute, Taiyuan 030001, China)

  • Jinge Song

    (State Grid Shanxi Electric Power Company Electric Power Research Institute, Taiyuan 030001, China)

Abstract

Addressing the problem that energy supply and load demand cannot be matched due to the difference in inertia effects among multiple energy sources, and taking into account the thermoelectric load, this paper designs a two-stage operation optimization model of IES considering multi-dimensional thermal inertia and constructs an intelligent adaptive solution method based on a time scale-model base. Validation is conducted through an arithmetic example. Scenario 2 has 15.3% fewer CO 2 emissions than Scenario 1, 19.7% less purchased electricity, and 20.0% less purchased electricity cost. The optimal algorithm for the day-ahead phase is GA, and the optimal algorithm for the intraday phase is PSO, which is able to produce optimization results in a few minutes.

Suggested Citation

  • Huiqiang Zhi & Min Zhang & Xiao Chang & Rui Fan & Huipeng Li & Le Gao & Jinge Song, 2025. "Research on the Operation Optimisation of Integrated Energy System Based on Multiple Thermal Inertia," Energies, MDPI, vol. 18(13), pages 1-33, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3500-:d:1693358
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3500/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3500/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Xian-Feng & Wang, Ke & Ma, Wen-Hao & Wu, Chun-Ling & Huang, Xin-Rong & Ma, Zhi-Xiong & Li, Zhi-Han, 2024. "Multi-objective particle swarm optimization algorithm based on multi-strategy improvement for hybrid energy storage optimization configuration," Renewable Energy, Elsevier, vol. 223(C).
    2. Sun, Peng & Teng, Yun & Chen, Zhe, 2021. "Robust coordinated optimization for multi-energy systems based on multiple thermal inertia numerical simulation and uncertainty analysis," Applied Energy, Elsevier, vol. 296(C).
    3. Wang, Qi & Miao, Cairan & Tang, Yi, 2022. "Power shortage support strategies considering unified gas-thermal inertia in an integrated energy system," Applied Energy, Elsevier, vol. 328(C).
    4. Tang, Bao-Jun & Cao, Xi-Lin & Li, Ru & Xiang, Zhi-Bo & Zhang, Sen, 2024. "Economic and low-carbon planning for interconnected integrated energy systems considering emerging technologies and future development trends," Energy, Elsevier, vol. 302(C).
    5. Wang, Dan & Zhi, Yun-qiang & Jia, Hong-jie & Hou, Kai & Zhang, Shen-xi & Du, Wei & Wang, Xu-dong & Fan, Meng-hua, 2019. "Optimal scheduling strategy of district integrated heat and power system with wind power and multiple energy stations considering thermal inertia of buildings under different heating regulation modes," Applied Energy, Elsevier, vol. 240(C), pages 341-358.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Félix González & Paul Arévalo & Luis Ramirez, 2025. "Game Theory and Robust Predictive Control for Peer-to-Peer Energy Management: A Pathway to a Low-Carbon Economy," Sustainability, MDPI, vol. 17(5), pages 1-23, February.
    2. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Pan, Bo & Qi, Shiqiang, 2020. "Two-stage stochastic optimal operation of integrated electricity and heat system considering reserve of flexible devices and spatial-temporal correlation of wind power," Applied Energy, Elsevier, vol. 275(C).
    3. Wei Wei & Yusong Guo & Kai Hou & Kai Yuan & Yi Song & Hongjie Jia & Chongbo Sun, 2021. "Distributed Thermal Energy Storage Configuration of an Urban Electric and Heat Integrated Energy System Considering Medium Temperature Characteristics," Energies, MDPI, vol. 14(10), pages 1-34, May.
    4. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    5. Xie, Shiwei & Hu, Zhijian & Wang, Jueying & Chen, Yuwei, 2020. "The optimal planning of smart multi-energy systems incorporating transportation, natural gas and active distribution networks," Applied Energy, Elsevier, vol. 269(C).
    6. Qin, Xin & Sun, Hongbin & Shen, Xinwei & Guo, Ye & Guo, Qinglai & Xia, Tian, 2019. "A generalized quasi-dynamic model for electric-heat coupling integrated energy system with distributed energy resources," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Sun, Weijia & Wang, Qi & Ye, Yujian & Tang, Yi, 2022. "Unified modelling of gas and thermal inertia for integrated energy system and its application to multitype reserve procurement," Applied Energy, Elsevier, vol. 305(C).
    8. Wu, Xiao & Yang, Lihua & Zheng, Bingle, 2024. "Joint capacity configuration and demand response optimization of integrated energy system considering economic and dynamic control performance," Energy, Elsevier, vol. 301(C).
    9. Kong, Xiangyu & Sun, Fangyuan & Huo, Xianxu & Li, Xue & Shen, Yu, 2020. "Hierarchical optimal scheduling method of heat-electricity integrated energy system based on Power Internet of Things," Energy, Elsevier, vol. 210(C).
    10. Jieyu Xie & Xingying Chen & Kun Yu & Lei Gan & Haochen Hua & Bo Wang & Yuelong Qu, 2024. "Research on the Configuration of a 100% Green Electricity Supplied Zero-Carbon Integrated Energy Station," Energies, MDPI, vol. 17(16), pages 1-22, August.
    11. Yang, Dongfeng & Xu, Yang & Liu, Xiaojun & Jiang, Chao & Nie, Fanjie & Ran, Zixu, 2022. "Economic-emission dispatch problem in integrated electricity and heat system considering multi-energy demand response and carbon capture Technologies," Energy, Elsevier, vol. 253(C).
    12. Yuan, Jianjuan & Huang, Ke & Han, Zhao & Zhou, Zhihua & Lu, Shilei, 2021. "A new feedback predictive model for improving the operation efficiency of heating station based on indoor temperature," Energy, Elsevier, vol. 222(C).
    13. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Li, Jinhang & Chen, Heng & Li, Jingjia & Zhang, Yixi & Pan, Peiyuan & Bian, Jiayu & Yu, Zhiyong, 2025. "Bi-level optimization model of hydrogen-blended gas units and multi-type energy storage system considering low-carbon operation," Energy, Elsevier, vol. 314(C).
    15. Zheng, Jinfu & Zhou, Zhigang & Zhao, Jianing & Hu, Songtao & Wang, Jinda, 2021. "Effects of intermittent heating on an integrated heat and power dispatch system for wind power integration and corresponding operation regulation," Applied Energy, Elsevier, vol. 287(C).
    16. Ghilardi, Lavinia Marina Paola & Castelli, Alessandro Francesco & Moretti, Luca & Morini, Mirko & Martelli, Emanuele, 2021. "Co-optimization of multi-energy system operation, district heating/cooling network and thermal comfort management for buildings," Applied Energy, Elsevier, vol. 302(C).
    17. Dongwen Chen & Zheng Chu, 2024. "Enhancing Power Supply Flexibility in Renewable Energy Systems with Optimized Energy Dispatch in Coupled CHP, Heat Pump, and Thermal Storage," Energies, MDPI, vol. 17(12), pages 1-29, June.
    18. Liu, Jicheng & Lu, Chaoran & Ma, Xuying & Yang, Xu & Sun, Jiakang & Wang, Yan, 2025. "Economic effects analysis model of electro-hydrogen coupling system under energy internet in China," Energy, Elsevier, vol. 318(C).
    19. Qin, Chun & Zhao, Jun & Chen, Long & Liu, Ying & Wang, Wei, 2022. "An adaptive piecewise linearized weighted directed graph for the modeling and operational optimization of integrated energy systems," Energy, Elsevier, vol. 244(PA).
    20. Lei, Yang & Wang, Dan & Jia, Hongjie & Li, Jiaxi & Chen, Jingcheng & Li, Jingru & Yang, Zhihong, 2021. "Multi-stage stochastic planning of regional integrated energy system based on scenario tree path optimization under long-term multiple uncertainties," Applied Energy, Elsevier, vol. 300(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3500-:d:1693358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.