IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3452-d1691897.html
   My bibliography  Save this article

A Supervisory Control Framework for Fatigue-Aware Wake Steering in Wind Farms

Author

Listed:
  • Yang Shen

    (Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310051, China)

  • Jinkui Zhu

    (Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310051, China)

  • Peng Hou

    (Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310051, China)

  • Shuowang Zhang

    (State Key Laboratory of Offshore Wind Power Equipment and Wind Energy High-Efficient Utilization, Xiangtan 411102, China)

  • Xinglin Wang

    (State Key Laboratory of Offshore Wind Power Equipment and Wind Energy High-Efficient Utilization, Xiangtan 411102, China)

  • Guodong He

    (Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310051, China)

  • Chao Lu

    (Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310051, China)

  • Enyu Wang

    (Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310051, China)

  • Yiwen Wu

    (Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310051, China)

Abstract

Wake steering has emerged as a promising strategy to mitigate turbine wake losses, with existing research largely focusing on the aerodynamic optimization of yaw angles. However, many prior approaches rely on static look-up tables (LUTs), offering limited adaptability to real-world wind variability and leading to non-optimal results. More importantly, these energy-focused strategies overlook the mechanical implications of frequent yaw activities in pursuit of the maximum power output, which may lead to premature exhaustion of the yaw system’s design life, thereby accelerating structural degradation. This study proposes a supervisory control framework that balances energy capture with structural reliability through three key innovations: (1) upstream-based inflow sensing for real-time capture of free-stream wind, (2) fatigue-responsive optimization constrained by a dynamic actuation quota system with adaptive yaw activation, and (3) a bidirectional threshold adjustment mechanism that redistributes unused actuation allowances and compensates for transient quota overruns. A case study at an offshore wind farm shows that the framework improves energy yield by 3.94%, which is only 0.29% below conventional optimization, while reducing yaw duration and activation frequency by 48.5% and 74.6%, respectively. These findings demonstrate the framework’s potential as a fatigue-aware control paradigm that balances energy efficiency with system longevity.

Suggested Citation

  • Yang Shen & Jinkui Zhu & Peng Hou & Shuowang Zhang & Xinglin Wang & Guodong He & Chao Lu & Enyu Wang & Yiwen Wu, 2025. "A Supervisory Control Framework for Fatigue-Aware Wake Steering in Wind Farms," Energies, MDPI, vol. 18(13), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3452-:d:1691897
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3452/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3452/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lin, Jian Wei & Zhu, Wei Jun & Shen, Wen Zhong, 2022. "New engineering wake model for wind farm applications," Renewable Energy, Elsevier, vol. 198(C), pages 1354-1363.
    2. Zhang, Jincheng & Zhao, Xiaowei, 2020. "A novel dynamic wind farm wake model based on deep learning," Applied Energy, Elsevier, vol. 277(C).
    3. Ti, Zilong & Deng, Xiao Wei & Zhang, Mingming, 2021. "Artificial Neural Networks based wake model for power prediction of wind farm," Renewable Energy, Elsevier, vol. 172(C), pages 618-631.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Rui & Zhang, Jincheng & Zhao, Xiaowei, 2022. "Dynamic wind farm wake modeling based on a Bilateral Convolutional Neural Network and high-fidelity LES data," Energy, Elsevier, vol. 258(C).
    2. Luo, Zhaohui & Wang, Longyan & Xu, Jian & Wang, Zilu & Yuan, Jianping & Tan, Andy C.C., 2024. "A reduced order modeling-based machine learning approach for wind turbine wake flow estimation from sparse sensor measurements," Energy, Elsevier, vol. 294(C).
    3. Zhiwen Deng & Chang Xu & Zhihong Huo & Xingxing Han & Feifei Xue, 2023. "Yaw Optimisation for Wind Farm Production Maximisation Based on a Dynamic Wake Model," Energies, MDPI, vol. 16(9), pages 1-20, May.
    4. Shen, Wen Zhong & Lin, Jian Wei & Jiang, Yu Hang & Feng, Ju & Cheng, Li & Zhu, Wei Jun, 2023. "A novel yaw wake model for wind farm control applications," Renewable Energy, Elsevier, vol. 218(C).
    5. Abdulelah Alkesaiberi & Fouzi Harrou & Ying Sun, 2022. "Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study," Energies, MDPI, vol. 15(7), pages 1-24, March.
    6. Kabir Bashir Shariff & Sylvain S. Guillou, 2025. "Towards a Generalized Tidal Turbine Wake Analytical Model for Turbine Placement in Array Accounting for Added Turbulence," Energies, MDPI, vol. 18(9), pages 1-27, April.
    7. Ai, Chunyu & He, Shan & Hu, Heng & Fan, Xiaochao & Wang, Weiqing, 2023. "Chaotic time series wind power interval prediction based on quadratic decomposition and intelligent optimization algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    8. Purohit, Shantanu & Ng, E.Y.K. & Syed Ahmed Kabir, Ijaz Fazil, 2022. "Evaluation of three potential machine learning algorithms for predicting the velocity and turbulence intensity of a wind turbine wake," Renewable Energy, Elsevier, vol. 184(C), pages 405-420.
    9. Yang, Shanghui & Deng, Xiaowei & Li, Qinglan, 2025. "A joint optimization framework for power and fatigue life based on cooperative wake steering of wind farm," Energy, Elsevier, vol. 319(C).
    10. Yang, Shanghui & Deng, Xiaowei & Ti, Zilong & Yan, Bowen & Yang, Qingshan, 2022. "Cooperative yaw control of wind farm using a double-layer machine learning framework," Renewable Energy, Elsevier, vol. 193(C), pages 519-537.
    11. Luo, Zhaohui & Wang, Longyan & Fu, Yanxia & Xu, Jian & Yuan, Jianping & Tan, Andy Chit, 2024. "Wind turbine dynamic wake flow estimation (DWFE) from sparse data via reduced-order modeling-based machine learning approach," Renewable Energy, Elsevier, vol. 237(PA).
    12. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    13. Abdulrahman A. Alghamdi & Abdelhameed Ibrahim & El-Sayed M. El-Kenawy & Abdelaziz A. Abdelhamid, 2023. "Renewable Energy Forecasting Based on Stacking Ensemble Model and Al-Biruni Earth Radius Optimization Algorithm," Energies, MDPI, vol. 16(3), pages 1-30, January.
    14. Zhang, Jincheng & Zhao, Xiaowei, 2022. "Wind farm wake modeling based on deep convolutional conditional generative adversarial network," Energy, Elsevier, vol. 238(PB).
    15. Zhang, Jincheng & Zhao, Xiaowei, 2021. "Spatiotemporal wind field prediction based on physics-informed deep learning and LIDAR measurements," Applied Energy, Elsevier, vol. 288(C).
    16. James Roetzer & Xingjie Li & John Hall, 2024. "Review of Data-Driven Models in Wind Energy: Demonstration of Blade Twist Optimization Based on Aerodynamic Loads," Energies, MDPI, vol. 17(16), pages 1-20, August.
    17. Moss, Coleman & Maulik, Romit & Iungo, Giacomo Valerio, 2024. "Augmenting insights from wind turbine data through data-driven approaches," Applied Energy, Elsevier, vol. 376(PA).
    18. Meng, Anbo & Zhang, Haitao & Dai, Zhongfu & Xian, Zikang & Xiao, Liexi & Rong, Jiayu & Li, Chen & Zhu, Jianbin & Li, Hanhong & Yin, Yiding & Liu, Jiawei & Tang, Yanshu & Zhang, Bin & Yin, Hao, 2024. "An adaptive distribution-matched recurrent network for wind power prediction using time-series distribution period division," Energy, Elsevier, vol. 299(C).
    19. Yang, Kun & Deng, Xiaowei & Ti, Zilong & Yang, Shanghui & Huang, Senbin & Wang, Yuhang, 2023. "A data-driven layout optimization framework of large-scale wind farms based on machine learning," Renewable Energy, Elsevier, vol. 218(C).
    20. Wang, Yu & Wei, Shanbi & Yang, Wei & Chai, Yi, 2023. "Adaptive economic predictive control for offshore wind farm active yaw considering generation uncertainty," Applied Energy, Elsevier, vol. 351(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3452-:d:1691897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.