IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3269-d1684906.html
   My bibliography  Save this article

Hierarchical Charging Scheduling Strategy for Electric Vehicles Based on NSGA-II

Author

Listed:
  • Yikang Chen

    (College of Automotive Engineering, Jilin University, Changchun 130025, China)

  • Zhicheng Bao

    (College of Automotive Engineering, Jilin University, Changchun 130025, China)

  • Yihang Tan

    (College of Automotive Engineering, Jilin University, Changchun 130025, China)

  • Jiayang Wang

    (College of Automotive Engineering, Jilin University, Changchun 130025, China)

  • Yang Liu

    (College of Automotive Engineering, Jilin University, Changchun 130025, China)

  • Haixiang Sang

    (College of Automotive Engineering, Jilin University, Changchun 130025, China)

  • Xinmei Yuan

    (College of Automotive Engineering, Jilin University, Changchun 130025, China
    China National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130025, China)

Abstract

Electric vehicles (EVs) are gradually gaining high penetration in transportation due to their low carbon emissions and high power conversion efficiency. However, the large-scale charging demand poses significant challenges to grid stability, particularly the risk of transformer overload caused by random charging. It is necessary that a coordinated charging strategy be carried out to alleviate this challenge. We propose a hierarchical charging scheduling framework to optimize EV charging consisting of demand prediction and hierarchical scheduling. Fuzzy reasoning is introduced to predict EV charging demand, better modeling the relationship between travel distance and charging demand. A hierarchical model was developed based on NSGA-II, where the upper layer generates Pareto-optimal power allocations and then the lower layer dispatches individual vehicles under these allocations. A simulation under this strategy was conducted in a residential scenario. The results revealed that the coordinated strategy reduced the user costs by 21% and the grid load variance by 64% compared with uncoordinated charging. Additionally, the Pareto front could serve as a decision-making tool for balancing user economic interest and grid stability objectives.

Suggested Citation

  • Yikang Chen & Zhicheng Bao & Yihang Tan & Jiayang Wang & Yang Liu & Haixiang Sang & Xinmei Yuan, 2025. "Hierarchical Charging Scheduling Strategy for Electric Vehicles Based on NSGA-II," Energies, MDPI, vol. 18(13), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3269-:d:1684906
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3269/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3269/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shang, Yitong & Li, Duo & Li, Yang & Li, Sen, 2025. "Explainable spatiotemporal multi-task learning for electric vehicle charging demand prediction," Applied Energy, Elsevier, vol. 384(C).
    2. Mohamed Mokhtar & Mostafa F. Shaaban & Mahmoud H. Ismail & Hatem F. Sindi & Muhyaddin Rawa, 2022. "Reliability Assessment under High Penetration of EVs including V2G Strategy," Energies, MDPI, vol. 15(4), pages 1-17, February.
    3. Emilia M. Szumska, 2023. "Electric Vehicle Charging Infrastructure along Highways in the EU," Energies, MDPI, vol. 16(2), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Syed Abdullah Al Nahid & Junjian Qi, 2025. "A Hybrid EV Charging Approach Based on MILP and a Genetic Algorithm," Energies, MDPI, vol. 18(14), pages 1-30, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiangfan Yuan & Min Zhang & Hongxun Tian & Xiangyu Guo & Xiao Chang & Tengxin Wang & Yingjun Wu, 2025. "A Fast-Converging Virtual Power Plant Game Trading Model Based on Reference Ancillary Service Pricing," Energies, MDPI, vol. 18(10), pages 1-19, May.
    2. Alessandro Di Giorgio & Emanuele De Santis & Lucia Frettoni & Stefano Felli & Francesco Liberati, 2023. "Electric Vehicle Fast Charging: A Congestion-Dependent Stochastic Model Predictive Control under Uncertain Reference," Energies, MDPI, vol. 16(3), pages 1-16, January.
    3. Mohammed Gronfula & Khairy Sayed, 2025. "AI-Driven Predictive Control for Dynamic Energy Optimization in Flying Cars," Energies, MDPI, vol. 18(7), pages 1-35, April.
    4. Weiqi Pan & Bokang Zou & Fengtao Li & Yifu Luo & Qirui Chen & Yuanshi Zhang & Yang Li, 2024. "Collaborative Operation Optimization Scheduling Strategy of Electric Vehicle and Steel Plant Considering V2G," Energies, MDPI, vol. 17(11), pages 1-14, May.
    5. Tung Linh Nguyen & Quynh Anh Nguyen, 2025. "A Multi-Objective PSO-GWO Approach for Smart Grid Reconfiguration with Renewable Energy and Electric Vehicles," Energies, MDPI, vol. 18(8), pages 1-15, April.
    6. Gustavo L. Aschidamini & Gederson A. da Cruz & Mariana Resener & Maicon J. S. Ramos & Luís A. Pereira & Bibiana P. Ferraz & Sérgio Haffner & Panos M. Pardalos, 2022. "Expansion Planning of Power Distribution Systems Considering Reliability: A Comprehensive Review," Energies, MDPI, vol. 15(6), pages 1-29, March.
    7. Lorenzo Ricciardi Celsi & Anna Valli, 2023. "Applied Control and Artificial Intelligence for Energy Management: An Overview of Trends in EV Charging, Cyber-Physical Security and Predictive Maintenance," Energies, MDPI, vol. 16(12), pages 1-23, June.
    8. Zhen Chen & Ming-Ting Chen & Shu-Wei Jia, 2025. "Simulation and Optimization of New Energy Vehicles Promotion Policy Strategies Considering Energy Saving, Carbon Reduction, and Consumers’ Willingness Based on System Dynamics," Sustainability, MDPI, vol. 17(7), pages 1-23, March.
    9. Yongzhong Wu & Yikuan Lu & Zhijie Zhu & José Holguín-Veras, 2023. "Optimizing Electric Vehicle Charging Infrastructure on Highways: A Multi-Agent-Based Planning Approach," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    10. Jie Li & Yafei Li & Xiuli Wang & Hengyuan Zhang & Yunpeng Xiao, 2025. "Low-Carbon Economic Model of Multi-Energy Microgrid in a Park Considering the Joint Operation of a Carbon Capture Power Plant, Cooling, Heating, and Power System, and Power-to-Gas Equipment," Energies, MDPI, vol. 18(11), pages 1-20, June.
    11. Dawei Wang & Hanqi Dai & Yuan Jin & Zhuoqun Li & Shanna Luo & Xuebin Li, 2025. "Employing Quantum Entanglement for Real-Time Coordination of Distributed Electric Vehicle Charging Stations: Advancing Grid Efficiency and Stability," Energies, MDPI, vol. 18(11), pages 1-27, June.
    12. Yifeng Liu & Meng Chen & Pingfan Wang & Yingxiang Wang & Feng Li & Hui Hou, 2025. "A Review of Carbon Reduction Pathways and Policy–Market Mechanisms in Integrated Energy Systems in China," Sustainability, MDPI, vol. 17(7), pages 1-25, March.
    13. Robert Kaznowski & Wojciech Ambroszko & Dariusz Sztafrowski, 2025. "Autonomous Electric Vehicle Charging Station Along a High-Traffic Road as a Model for Efficient Implementation of Emission-Free Economy," Energies, MDPI, vol. 18(12), pages 1-20, June.
    14. Bingxu Zhai & Yuanzhuo Li & Wei Qiu & Rui Zhang & Zhilin Jiang & Wei Wang & Tao Qian & Qinran Hu, 2025. "Physics-Informed Multi-Agent DRL-Based Active Distribution Network Zonal Balancing Control Strategy for Security and Supply Preservation," Energies, MDPI, vol. 18(11), pages 1-19, June.
    15. Abdulaziz Almutairi, 2022. "Impact Assessment of Diverse EV Charging Infrastructures on Overall Service Reliability," Sustainability, MDPI, vol. 14(20), pages 1-16, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3269-:d:1684906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.