IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2905-d1669928.html
   My bibliography  Save this article

Low-Carbon Economic Model of Multi-Energy Microgrid in a Park Considering the Joint Operation of a Carbon Capture Power Plant, Cooling, Heating, and Power System, and Power-to-Gas Equipment

Author

Listed:
  • Jie Li

    (State Grid Suzhou Power Supply Company, State Grid JiangSu Electric Power Company, Suzhou 215004, China)

  • Yafei Li

    (State Grid Suzhou Power Supply Company, State Grid JiangSu Electric Power Company, Suzhou 215004, China)

  • Xiuli Wang

    (School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Hengyuan Zhang

    (School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Yunpeng Xiao

    (School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

Multi-energy microgrids (MEMs) can achieve efficient and low-carbon energy utilization by relying on the coordination, complementarity, and coupling conversion of different energy sources, which is of great significance for new energy consumption and energy cascade utilization. In this paper, a low-carbon economic dispatch model of a multi-energy microgrid that uses a joint carbon capture–CHP-P2G operation is proposed. Firstly, the basic structure of the power–electrolysis–methanol energy (PEME) is established. Secondly, a flexible mechanism for the joint operation of CCPPs and CHP is analyzed, and a flexible joint operation model for carbon capture–CHP-P2G is proposed. Finally, considering the system’s low-carbon operation and economy, a low-carbon economic dispatch model for a multi-energy microgrid in a park is established, with the goal of minimizing the total operating cost of PEME in the park. The results illustrate that the introduction of a liquid storage tank reduces the total cost and carbon emissions of the MEM by 4.04% and 8.49%, respectively. The application of an electric boiler and ORC effectively alleviates the problem of peak–valley differences in the electric heating load. Our joint operation model realizes the dual optimization of the MEM’s flexibility and low-carbon requirement through the collaboration of multiple pieces of technology.

Suggested Citation

  • Jie Li & Yafei Li & Xiuli Wang & Hengyuan Zhang & Yunpeng Xiao, 2025. "Low-Carbon Economic Model of Multi-Energy Microgrid in a Park Considering the Joint Operation of a Carbon Capture Power Plant, Cooling, Heating, and Power System, and Power-to-Gas Equipment," Energies, MDPI, vol. 18(11), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2905-:d:1669928
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2905/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2905/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shang, Yitong & Li, Duo & Li, Yang & Li, Sen, 2025. "Explainable spatiotemporal multi-task learning for electric vehicle charging demand prediction," Applied Energy, Elsevier, vol. 384(C).
    2. Li, Miao & Mu, Hailin & Li, Nan & Ma, Baoyu, 2016. "Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system," Energy, Elsevier, vol. 99(C), pages 202-220.
    3. Chen, J.J. & Qi, B.X. & Rong, Z.K. & Peng, K. & Zhao, Y.L. & Zhang, X.H., 2021. "Multi-energy coordinated microgrid scheduling with integrated demand response for flexibility improvement," Energy, Elsevier, vol. 217(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    2. Dawei Wang & Hanqi Dai & Yuan Jin & Zhuoqun Li & Shanna Luo & Xuebin Li, 2025. "Employing Quantum Entanglement for Real-Time Coordination of Distributed Electric Vehicle Charging Stations: Advancing Grid Efficiency and Stability," Energies, MDPI, vol. 18(11), pages 1-27, June.
    3. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    4. Gao, Yang & Ai, Qian & He, Xing & Fan, Songli, 2023. "Coordination for regional integrated energy system through target cascade optimization," Energy, Elsevier, vol. 276(C).
    5. Mehar Ullah & Daniel Gutierrez-Rojas & Eero Inkeri & Tero Tynjälä & Pedro H. J. Nardelli, 2022. "Operation of Power-to-X-Related Processes Based on Advanced Data-Driven Methods: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
    6. Wang, Lixiao & Jing, Z.X. & Zheng, J.H. & Wu, Q.H. & Wei, Feng, 2018. "Decentralized optimization of coordinated electrical and thermal generations in hierarchical integrated energy systems considering competitive individuals," Energy, Elsevier, vol. 158(C), pages 607-622.
    7. Li, Ruonan & Mahalec, Vladimir, 2022. "Integrated design and operation of energy systems for residential buildings, commercial buildings, and light industries," Applied Energy, Elsevier, vol. 305(C).
    8. Nazar, Mehrdad Setayesh & Jafarpour, Pourya & Shafie-khah, Miadreza & Catalão, João P.S., 2024. "Optimal planning of self-healing multi-carriers energy systems considering integration of smart buildings and parking lots energy resources," Energy, Elsevier, vol. 286(C).
    9. Afzali, Sayyed Faridoddin & Mahalec, Vladimir, 2017. "Optimal design, operation and analytical criteria for determining optimal operating modes of a CCHP with fired HRSG, boiler, electric chiller and absorption chiller," Energy, Elsevier, vol. 139(C), pages 1052-1065.
    10. Ma, Haoyu & Wang, Han, 2025. "Optimal resilient scheduling strategy for electricity–gas–hydrogen multi-energy microgrids considering emergency islanding," Energy, Elsevier, vol. 324(C).
    11. Li, Nan & Zhao, Xunwen & Shi, Xunpeng & Pei, Zhenwei & Mu, Hailin & Taghizadeh-Hesary, Farhad, 2021. "Integrated energy systems with CCHP and hydrogen supply: A new outlet for curtailed wind power," Applied Energy, Elsevier, vol. 303(C).
    12. Jiangfan Yuan & Min Zhang & Hongxun Tian & Xiangyu Guo & Xiao Chang & Tengxin Wang & Yingjun Wu, 2025. "A Fast-Converging Virtual Power Plant Game Trading Model Based on Reference Ancillary Service Pricing," Energies, MDPI, vol. 18(10), pages 1-19, May.
    13. Li, Yanbin & Zhang, Feng & Li, Yun & Wang, Yuwei, 2021. "An improved two-stage robust optimization model for CCHP-P2G microgrid system considering multi-energy operation under wind power outputs uncertainties," Energy, Elsevier, vol. 223(C).
    14. Li-Peng Shao & Jia-Jia Chen & Lu-Wen Pan & Zi-Juan Yang, 2022. "A Credibility Theory-Based Robust Optimization Model to Hedge Price Uncertainty of DSO with Multiple Transactions," Mathematics, MDPI, vol. 10(23), pages 1-20, November.
    15. Guozheng Li & Rui Wang & Tao Zhang & Mengjun Ming, 2018. "Multi-Objective Optimal Design of Renewable Energy Integrated CCHP System Using PICEA-g," Energies, MDPI, vol. 11(4), pages 1-26, March.
    16. Zheng, Xuyue & Wu, Guoce & Qiu, Yuwei & Zhan, Xiangyan & Shah, Nilay & Li, Ning & Zhao, Yingru, 2018. "A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China," Applied Energy, Elsevier, vol. 210(C), pages 1126-1140.
    17. Ren, Xin-Yu & Wang, Zhi-Hua & Li, Ming-Chen & Li, Ling-Ling, 2025. "Optimization and performance analysis of integrated energy systems considering hybrid electro-thermal energy storage," Energy, Elsevier, vol. 314(C).
    18. Zhou, Xu & Ma, Zhongjing & Zou, Suli & Zhang, Jinhui, 2022. "Consensus-based distributed economic dispatch for Multi Micro Energy Grid systems under coupled carbon emissions," Applied Energy, Elsevier, vol. 324(C).
    19. Ming Li & Jin Ye, 2022. "Design and Implementation of Demand Side Response Based on Binomial Distribution," Energies, MDPI, vol. 15(22), pages 1-15, November.
    20. Ge, Haotian & Zhu, Yu & Zhong, Jiuming & Wu, Liang, 2024. "Day-ahead optimization for smart energy management of multi-microgrid using a stochastic-robust model," Energy, Elsevier, vol. 313(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2905-:d:1669928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.