IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i12p3176-d1680766.html
   My bibliography  Save this article

Fault Management in Speed Control Systems of Hydroelectric Power Plants Through Petri Nets Modeling: Case Study of the Alazán Power Plant, Ecuador

Author

Listed:
  • Cristian Fernando Valdez-Zumba

    (Master’s Program in Project Management, Universidad Politécnica Salesiana, Cuenca EC010103, Ecuador
    These authors contributed equally to this work.)

  • Luis Fernando Guerrero-Vásquez

    (Applied Embedded Hardware Research Group (GIHEA), Universidad Politécnica Salesiana, Cuenca EC010103, Ecuador
    These authors contributed equally to this work.)

Abstract

This study addresses the challenge of improving fault management in hydroelectric systems using Petri nets. The objective is to propose a novel methodology for efficient fault diagnosis and intervention in the Governor system, a critical component in regulating turbine speed. Traditional diagnostic approaches often rely on manual inspection and expert intuition, and they lack formal mechanisms to model concurrent or asynchronous system behavior—leading to delays and reduced accuracy in fault identification. Our approach introduces a structured modeling technique using Petri nets, enabling dynamic analysis of the system’s behavior and response to faults. A detailed methodology was developed, beginning with a thorough characterization of the system and its translation into a Petri net model. Simulation results demonstrate the model’s effectiveness in significantly reducing diagnostic and intervention times compared to traditional methods. Results show that using Petri nets improves fault detection accuracy, accelerates decision-making, and optimizes resource allocation. This research concludes that the proposed model offers a robust framework for enhancing fault management in hydroelectric plants, providing both operational efficiency and reduced downtime. Future work will focus on integrating real-time monitoring and further validating the model in live environments to ensure scalability and adaptability to other power generation systems.

Suggested Citation

  • Cristian Fernando Valdez-Zumba & Luis Fernando Guerrero-Vásquez, 2025. "Fault Management in Speed Control Systems of Hydroelectric Power Plants Through Petri Nets Modeling: Case Study of the Alazán Power Plant, Ecuador," Energies, MDPI, vol. 18(12), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3176-:d:1680766
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/12/3176/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/12/3176/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arthur Henrique de Andrade Melani & Miguel Angelo de Carvalho Michalski & Carlos Alberto Murad & Adherbal Caminada Netto & Gilberto Francisco Martha de Souza, 2022. "Generalized Stochastic Petri Nets for Planning and Optimizing Maintenance Logistics of Small Hydroelectric Power Plants," Energies, MDPI, vol. 15(8), pages 1-16, April.
    2. Arthur H.A. Melani & Carlos A. Murad & Adherbal Caminada Netto & Gilberto F.M. Souza & Silvio I. Nabeta, 2019. "Maintenance Strategy Optimization of a Coal-Fired Power Plant Cooling Tower through Generalized Stochastic Petri Nets," Energies, MDPI, vol. 12(10), pages 1-28, May.
    3. Jakov Batelić & Karlo Griparić & Dario Matika, 2021. "Impact of Remediation-Based Maintenance on the Reliability of a Coal-Fired Power Plant Using Generalized Stochastic Petri Nets," Energies, MDPI, vol. 14(18), pages 1-14, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Henrique de Andrade Melani & Miguel Angelo de Carvalho Michalski & Carlos Alberto Murad & Adherbal Caminada Netto & Gilberto Francisco Martha de Souza, 2022. "Generalized Stochastic Petri Nets for Planning and Optimizing Maintenance Logistics of Small Hydroelectric Power Plants," Energies, MDPI, vol. 15(8), pages 1-16, April.
    2. Tae-Woo Kim & Yenjae Chang & Dae-Wook Kim & Man-Keun Kim, 2020. "Preventive Maintenance and Forced Outages in Power Plants in Korea," Energies, MDPI, vol. 13(14), pages 1-12, July.
    3. Jakov Batelić & Karlo Griparić & Dario Matika, 2021. "Impact of Remediation-Based Maintenance on the Reliability of a Coal-Fired Power Plant Using Generalized Stochastic Petri Nets," Energies, MDPI, vol. 14(18), pages 1-14, September.
    4. Kim, Seon-Yong & Kim, Man-Keun & Choi, Myung Hwan & Kim, Dae-Wook, 2024. "Optimal preventive maintenance: Balancing reliability and costs in the electricity market," Energy Policy, Elsevier, vol. 194(C).
    5. Renan Favarão da Silva & Marjorie Maria Bellinello & Gilberto Francisco Martha de Souza & Sara Antomarioni & Maurizio Bevilacqua & Filippo Emanuele Ciarapica, 2021. "Deciding a Multicriteria Decision-Making (MCDM) Method to Prioritize Maintenance Work Orders of Hydroelectric Power Plants," Energies, MDPI, vol. 14(24), pages 1-22, December.
    6. Fausto Pedro García Márquez, 2022. "Advanced Analytics in Renewable Energy," Energies, MDPI, vol. 15(10), pages 1-5, May.
    7. Emil Cazacu & Lucian-Gabriel Petrescu & Valentin Ioniță, 2022. "Smart Predictive Maintenance Device for Critical In-Service Motors," Energies, MDPI, vol. 15(12), pages 1-16, June.
    8. Yamano, Shuhei & Nakaya, Takashi & Ikegami, Takashi & Nakayama, Masayuki & Akisawa, Atsushi, 2021. "Optimization modeling of mixed gas engine types with different maintenance spans and costs: Case study OF CCHP to evaluate optimal gas engine operations and combination of the types," Energy, Elsevier, vol. 222(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3176-:d:1680766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.