IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2727-d1663463.html
   My bibliography  Save this article

Quantum State Estimation for Real-Time Battery Health Monitoring in Photovoltaic Storage Systems

Author

Listed:
  • Dawei Wang

    (State Grid Beijing Electric Power Company, Beijing 100031, China)

  • Liyong Wang

    (State Grid Beijing Electric Power Company, Beijing 100031, China)

  • Baoqun Zhang

    (State Grid Beijing Electric Power Company, Beijing 100031, China)

  • Chang Liu

    (State Grid Beijing Electric Power Company, Beijing 100031, China)

  • Yongliang Zhao

    (State Grid Beijing Electric Power Company, Beijing 100031, China)

  • Shanna Luo

    (School of Electrical and Control Engineering, North China University of Technology, Beijing 100144, China)

  • Jun Feng

    (School of Electrical and Control Engineering, North China University of Technology, Beijing 100144, China)

Abstract

The growing deployment of photovoltaic (PV) and energy storage systems (ESSs) in power grids has amplified concerns over component degradation, which undermines efficiency, increases costs, and shortens system lifespan. This paper proposes a quantum-enhanced optimization framework to mitigate degradation impacts in PV–storage systems through real-time adaptive energy dispatch. The framework combines quantum-assisted Monte Carlo simulation, quantum annealing, and reinforcement learning to model and optimize degradation pathways. A predictive maintenance module proactively adjusts charge–discharge cycles based on probabilistic forecasts of degradation states, improving resilience and operational efficiency. A hierarchical structure enables real-time degradation assessment, hourly dispatch optimization, and weekly long-term adjustments. The model is validated on a 5 MW PV array with a 2.5 MWh lithium-ion battery using real degradation profiles. Results demonstrate that the proposed framework reduces battery wear by 25% and extends PV module lifespan by approximately 2.5 years compared to classical methods. The hybrid quantum–classical implementation achieves scalable optimization under uncertainty, enabling faster convergence across high-dimensional solution spaces. This study introduces a novel paradigm in degradation-aware energy management, highlighting the potential of quantum computing to enhance both the sustainability and real-time control of renewable energy systems.

Suggested Citation

  • Dawei Wang & Liyong Wang & Baoqun Zhang & Chang Liu & Yongliang Zhao & Shanna Luo & Jun Feng, 2025. "Quantum State Estimation for Real-Time Battery Health Monitoring in Photovoltaic Storage Systems," Energies, MDPI, vol. 18(11), pages 1-23, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2727-:d:1663463
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2727/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2727/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruengwit Khwanrit & Saher Javaid & Yuto Lim & Chalie Charoenlarpnopparut & Yasuo Tan, 2024. "Optimal Vehicle-to-Grid Strategies for Energy Sharing Management Using Electric School Buses," Energies, MDPI, vol. 17(16), pages 1-25, August.
    2. Iwabuchi, Koki & Watari, Daichi & Zhao, Dafang & Taniguchi, Ittetsu & Catthoor, Francky & Onoye, Takao, 2025. "Enhancing grid stability in PV systems: A novel ramp rate control method utilizing PV cooling technology," Applied Energy, Elsevier, vol. 378(PA).
    3. Li, Shuangqi & Zhao, Pengfei & Gu, Chenghong & Huo, Da & Zeng, Xianwu & Pei, Xiaoze & Cheng, Shuang & Li, Jianwei, 2022. "Online battery-protective vehicle to grid behavior management," Energy, Elsevier, vol. 243(C).
    4. Lu, Xinhui & Liu, Zhaoxi & Ma, Li & Wang, Lingfeng & Zhou, Kaile & Feng, Nanping, 2020. "A robust optimization approach for optimal load dispatch of community energy hub," Applied Energy, Elsevier, vol. 259(C).
    5. Giampaolo Manzolini & Andrea Fusco & Domenico Gioffrè & Silvana Matrone & Riccardo Ramaschi & Marios Saleptsis & Riccardo Simonetti & Filip Sobic & Michael James Wood & Emanuele Ogliari & Sonia Leva, 2024. "Impact of PV and EV Forecasting in the Operation of a Microgrid," Forecasting, MDPI, vol. 6(3), pages 1-25, July.
    6. Li, Shuangqi & He, Hongwen & Zhao, Pengfei, 2021. "Energy management for hybrid energy storage system in electric vehicle: A cyber-physical system perspective," Energy, Elsevier, vol. 230(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    2. Paulo M. De Oliveira-De Jesus & Jose M. Yusta, 2024. "Optimal Power Dispatch for Maximum Energy Community Welfare by Considering Closed Distribution Systems and Renewable Sources," Energies, MDPI, vol. 17(18), pages 1-21, September.
    3. Mansour-Saatloo, Amin & Pezhmani, Yasin & Mirzaei, Mohammad Amin & Mohammadi-Ivatloo, Behnam & Zare, Kazem & Marzband, Mousa & Anvari-Moghaddam, Amjad, 2021. "Robust decentralized optimization of Multi-Microgrids integrated with Power-to-X technologies," Applied Energy, Elsevier, vol. 304(C).
    4. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    5. Jun Han & Chao Cai & Wenjie Pan & Hong Liu & Zhengyang Xu, 2024. "Hybrid Proximal Policy Optimization—Wasserstein Generative Adversarial Network Framework for Hosting Capacity Optimization in Renewable-Integrated Power Systems," Energies, MDPI, vol. 17(24), pages 1-22, December.
    6. Najafi, Arsalan & Jasiński, Michał & Leonowicz, Zbigniew, 2022. "A hybrid distributed framework for optimal coordination of electric vehicle aggregators problem," Energy, Elsevier, vol. 249(C).
    7. Tang, Bao-Jun & Cao, Xi-Lin & Li, Ru & Xiang, Zhi-Bo & Zhang, Sen, 2024. "Economic and low-carbon planning for interconnected integrated energy systems considering emerging technologies and future development trends," Energy, Elsevier, vol. 302(C).
    8. Ruengwit Khwanrit & Saher Javaid & Yuto Lim & Chalie Charoenlarpnopparut & Yasuo Tan, 2025. "Hierarchical Multi-Communities Energy Sharing Management with Electric Vehicle Integration," Energies, MDPI, vol. 18(2), pages 1-26, January.
    9. Seyfi, Mohammad & Mehdinejad, Mehdi & Mohammadi-Ivatloo, Behnam & Shayanfar, Heidarali, 2022. "Deep learning-based scheduling of virtual energy hubs with plug-in hybrid compressed natural gas-electric vehicles," Applied Energy, Elsevier, vol. 321(C).
    10. Ge, Haotian & Zhu, Yu & Zhong, Jiuming & Wu, Liang, 2024. "Day-ahead optimization for smart energy management of multi-microgrid using a stochastic-robust model," Energy, Elsevier, vol. 313(C).
    11. Li, Yuming & Wang, Tingyu & Li, Xinxi & Zhang, Guoqing & Chen, Kai & Yang, Wensheng, 2022. "Experimental investigation on thermal management system with flame retardant flexible phase change material for retired battery module," Applied Energy, Elsevier, vol. 327(C).
    12. Barone, G. & Buonomano, A. & Cipolla, G. & Forzano, C. & Giuzio, G.F. & Russo, G., 2024. "Designing aggregation criteria for end-users integration in energy communities: Energy and economic optimisation based on hybrid neural networks models," Applied Energy, Elsevier, vol. 371(C).
    13. Zhu, Dafeng & Yang, Bo & Liu, Yuxiang & Wang, Zhaojian & Ma, Kai & Guan, Xinping, 2022. "Energy management based on multi-agent deep reinforcement learning for a multi-energy industrial park," Applied Energy, Elsevier, vol. 311(C).
    14. Shanshan Guo & Zhiqiang Han & Jun Wei & Shenggang Guo & Liang Ma, 2022. "A Novel DC-AC Fast Charging Technology for Lithium-Ion Power Battery at Low-Temperatures," Sustainability, MDPI, vol. 14(11), pages 1-10, May.
    15. Mohammadpour Shotorbani, Amin & Zeinal-Kheiri, Sevda & Chhipi-Shrestha, Gyan & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Enhanced real-time scheduling algorithm for energy management in a renewable-integrated microgrid," Applied Energy, Elsevier, vol. 304(C).
    16. Bo, Lin & Han, Lijin & Xiang, Changle & Liu, Hui & Ma, Tian, 2022. "A Q-learning fuzzy inference system based online energy management strategy for off-road hybrid electric vehicles," Energy, Elsevier, vol. 252(C).
    17. Meng, Linghao & Li, Mei & Yang, Hongzhi, 2024. "Enhancing energy efficiency in distributed systems with hybrid energy storage," Energy, Elsevier, vol. 305(C).
    18. Armin Razmjoo & Arezoo Ghazanfari & Poul Alberg Østergaard & Mehdi Jahangiri & Andreas Sumper & Sahar Ahmadzadeh & Reza Eslamipoor, 2024. "Moving Toward the Expansion of Energy Storage Systems in Renewable Energy Systems—A Techno-Institutional Investigation with Artificial Intelligence Consideration," Sustainability, MDPI, vol. 16(22), pages 1-25, November.
    19. Jiao, Feixiang & Ji, Chengda & Zou, Yuan & Zhang, Xudong, 2021. "Tri-stage optimal dispatch for a microgrid in the presence of uncertainties introduced by EVs and PV," Applied Energy, Elsevier, vol. 304(C).
    20. Jing Yu & Jicheng Liu & Yajing Wen & Xue Yu, 2023. "Economic Optimal Coordinated Dispatch of Power for Community Users Considering Shared Energy Storage and Demand Response under Blockchain," Sustainability, MDPI, vol. 15(8), pages 1-26, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2727-:d:1663463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.