IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2681-d1661804.html
   My bibliography  Save this article

Optimizing Automatic Voltage Control Collaborative Responses in Chain-Structured Cascade Hydroelectric Power Plants Using Sensitivity Analysis

Author

Listed:
  • Li Zhang

    (Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu 610039, China
    Sichuan Provincial Engineering Research Center of Hydroelectric Energy Power Equipment Technology, Xihua University, Chengdu 610039, China
    School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada)

  • Jie Yang

    (Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu 610039, China
    Sichuan Provincial Engineering Research Center of Hydroelectric Energy Power Equipment Technology, Xihua University, Chengdu 610039, China)

  • Jun Wang

    (Dadu River Pubugou Hydropower General Plant, CHN ENERGY Investment Group Co., Ltd., Ya’an 625304, China)

  • Lening Wang

    (Dadu River Pubugou Hydropower General Plant, CHN ENERGY Investment Group Co., Ltd., Ya’an 625304, China)

  • Haiming Niu

    (Guoneng Zhishen Control Technology Co., Ltd., Beijing 102211, China)

  • Xiaobing Liu

    (Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu 610039, China
    Sichuan Provincial Engineering Research Center of Hydroelectric Energy Power Equipment Technology, Xihua University, Chengdu 610039, China)

  • Simon X. Yang

    (School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada)

  • Kun Yang

    (China Petroleum Engineering & Construction Corporation Southwest Company, Chengdu 610041, China)

Abstract

Southwestern China has abundant hydropower networks, wherein neighboring cascade hydropower stations within the same river basin are typically connected to the power system in a chain-structured configuration. However, when such chain-structured cascade hydroelectric power plants (CC-HPPs) participate in automatic voltage control (AVC), problems such as reactive power interactions among stations and unreasonable voltage gradients frequently arise. To address these issues, this study proposes an optimized multi-station coordinated response control strategy based on sensitivity analysis and hierarchical AVC. Firstly, based on the topology of the chain-structured hydropower sending-end network, a reactive power–voltage sensitivity matrix is constructed. Subsequently, a regional-voltage-coordinated regulation model is developed using sensitivity analysis, followed by the establishment of a mathematical model, solution algorithm, and operational procedure for multi-station AVC-coordinated response optimization. Finally, case studies based on the actual operational data of a CC-HPP network validate the effectiveness of the proposed strategy, and simulation results demonstrate that the approach reduces the interstation reactive power pulling up to 97.76% and improves the voltage gradient rationality by 16.67%. These results substantially improve grid stability and operational efficiency while establishing a more adaptable voltage control framework for large-scale hydropower integration. Furthermore, they provide a practical foundation for future advancements in multi-scenario hydropower regulation, enhanced coordination strategies, and predictive control capabilities within clean energy systems.

Suggested Citation

  • Li Zhang & Jie Yang & Jun Wang & Lening Wang & Haiming Niu & Xiaobing Liu & Simon X. Yang & Kun Yang, 2025. "Optimizing Automatic Voltage Control Collaborative Responses in Chain-Structured Cascade Hydroelectric Power Plants Using Sensitivity Analysis," Energies, MDPI, vol. 18(11), pages 1-27, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2681-:d:1661804
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2681/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2681/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mirko Ginocchi & Ferdinanda Ponci & Antonello Monti, 2021. "Sensitivity Analysis and Power Systems: Can We Bridge the Gap? A Review and a Guide to Getting Started," Energies, MDPI, vol. 14(24), pages 1-59, December.
    2. Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan Ignacio & Quaranta, Emanuele & Schild, P, 2019. "Analysis of emerging technologies in the hydropower sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Pirard & Vasileios Kitsikoudis & Sebastien Erpicum & Michel Pirotton & Pierre Archambeau & Benjamin Dewals, 2022. "Discharge Redistribution as a Key Process for Heuristic Optimization of Energy Production with Pumps as Turbines in a Water Distribution Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1237-1250, March.
    2. Prasasti, E.B. & Joseph, M. & Miao, X. & Zangeneh, M. & Terheiden, K., 2024. "Design of shaft- and rim-driven contra-rotating reversible pump-turbine to optimize novel low-head pumped hydro energy storages," Energy, Elsevier, vol. 306(C).
    3. Eva Bílková & Jiří Souček & Martin Kantor & Roman Kubíček & Petr Nowak, 2023. "Variable-Speed Propeller Turbine for Small Hydropower Applications," Energies, MDPI, vol. 16(9), pages 1-14, April.
    4. Raul-Alexandru Szakal & Alexandru Doman & Sebastian Muntean, 2021. "Influence of the Reshaped Elbow on the Unsteady Pressure Field in a Simplified Geometry of the Draft Tube," Energies, MDPI, vol. 14(5), pages 1-21, March.
    5. Kaiss, Mateus & Wan, Yihao & Gebbran, Daniel & Vila, Clodomiro Unsihuay & Dragičević, Tomislav, 2025. "Review on Virtual Power Plants/Virtual Aggregators: Concepts, applications, prospects and operation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    6. Paweł Tomczyk & Mirosław Wiatkowski, 2021. "The Effects of Hydropower Plants on the Physicochemical Parameters of the Bystrzyca River in Poland," Energies, MDPI, vol. 14(8), pages 1-29, April.
    7. Lang, Xiao & Nilsson, Håkan & Mao, Wengang, 2024. "Analysis of hydropower plant guide bearing vibrations by machine learning based identification of steady operations," Renewable Energy, Elsevier, vol. 236(C).
    8. Rudimar Caricimi & Géremi Gilson Dranka & Dalmarino Setti & Paula Ferreira, 2022. "Reframing the Selection of Hydraulic Turbines Integrating Analytical Hierarchy Process (AHP) and Fuzzy VIKOR Multi-Criteria Methods," Energies, MDPI, vol. 15(19), pages 1-26, October.
    9. Phoevos (Foivos) Koukouvinis & John Anagnostopoulos, 2023. "State of the Art in Designing Fish-Friendly Turbines: Concepts and Performance Indicators," Energies, MDPI, vol. 16(6), pages 1-25, March.
    10. Kemi Adeyeye & John Gallagher & Helena M. Ramos & Aonghus McNabola, 2022. "The Social Return Potential of Micro Hydropower in Water Networks Based on Demonstrator Examples," Energies, MDPI, vol. 15(18), pages 1-21, September.
    11. Stucchi, Leonardo & Bocchiola, Daniele & Simoni, Camilla & Ambrosini, Stefano Romano & Bianchi, Alberto & Rosso, Renzo, 2023. "Future hydropower production under the framework of NextGenerationEU: The case of Santa Giustina reservoir in Italian Alps," Renewable Energy, Elsevier, vol. 215(C).
    12. Hunt, Julian David & Jurasz, Jakub & Zakeri, Behnam & Nascimento, Andreas & Cross, Samuel & Caten, Carla Schwengber ten & de Jesus Pacheco, Diego Augusto & Pongpairoj, Pharima & Filho, Walter Leal & T, 2022. "Electric Truck Hydropower, a flexible solution to hydropower in mountainous regions," Energy, Elsevier, vol. 248(C).
    13. Sun, Longgang & Guo, Pengcheng & Yan, Jianguo, 2021. "Transient analysis of load rejection for a high-head Francis turbine based on structured overset mesh," Renewable Energy, Elsevier, vol. 171(C), pages 658-671.
    14. Gao, Chunyang & Yu, Xiangyang & Nan, Haipeng & Guo, Pengcheng & Fan, Guoliang & Meng, Zhijie & Ge, Ye & Cai, Qingsen, 2024. "Rotating speed pulling-back control and adaptive strategy of doubly-fed variable speed pumped storage unit," Renewable Energy, Elsevier, vol. 232(C).
    15. Kueppers, Martin & Paredes Pineda, Stephany Nicole & Metzger, Michael & Huber, Matthias & Paulus, Simon & Heger, Hans Joerg & Niessen, Stefan, 2021. "Decarbonization pathways of worldwide energy systems – Definition and modeling of archetypes," Applied Energy, Elsevier, vol. 285(C).
    16. Izabela Simon Rampasso & Geraldo Pereira Melo Filho & Rosley Anholon & Robson Amarante de Araujo & Gilson Brito Alves Lima & Luis Perez Zotes & Walter Leal Filho, 2019. "Challenges Presented in the Implementation of Sustainable Energy Management via ISO 50001:2011," Sustainability, MDPI, vol. 11(22), pages 1-12, November.
    17. Amini, Ali & Rey-Mermet, Samuel & Crettenand, Steve & Münch-Alligné, Cécile, 2025. "A hybrid methodology for assessing hydropower plants under flexible operations: Leveraging experimental data and machine learning techniques," Applied Energy, Elsevier, vol. 383(C).
    18. Chuan Qin & Yuqing Jin & Meng Tian & Ping Ju & Shun Zhou, 2023. "Comparative Study of Global Sensitivity Analysis and Local Sensitivity Analysis in Power System Parameter Identification," Energies, MDPI, vol. 16(16), pages 1-21, August.
    19. Aldemar Leguizamon-Perilla & Juan S. Rodriguez-Bernal & Laidi Moralez-Cruz & Nidia Isabel Farfán-Martinez & César Nieto-Londoño & Rafael E. Vásquez & Ana Escudero-Atehortua, 2023. "Digitalisation and Modernisation of Hydropower Operating Facilities to Support the Colombian Energy Mix Flexibility," Energies, MDPI, vol. 16(7), pages 1-17, March.
    20. Sha Li & Zezhou Cao & Kuangqing Hu & Diyi Chen, 2023. "Performance Assessment for Primary Frequency Regulation of Variable-Speed Pumped Storage Plant in Isolated Power Systems," Energies, MDPI, vol. 16(3), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2681-:d:1661804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.