IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i10p2616-d1658905.html
   My bibliography  Save this article

Distributed Time-Varying Optimal Resource Management for Microgrids via Fixed-Time Multiagent Approach

Author

Listed:
  • Tingting Zhou

    (FEMTO-ST Institute, Centre National de la Recherche Scientifique (CNRS), UTBM, Université Marie et Louis Pasteur, F-90000 Belfort, France)

  • Salah Laghrouche

    (FEMTO-ST Institute, Centre National de la Recherche Scientifique (CNRS), UTBM, Université Marie et Louis Pasteur, F-90000 Belfort, France)

  • Youcef Ait-Amirat

    (FEMTO-ST Institute, Centre National de la Recherche Scientifique (CNRS), UTBM, Université Marie et Louis Pasteur, F-90000 Belfort, France)

Abstract

This paper investigates the distributed time-varying (TV) resource management problem (RMP) for microgrids (MGs) within a multi-agent system (MAS) framework. A novel fixed-time (FXT) distributed optimization algorithm is proposed, capable of operating over switching communication graphs and handling both local inequality and global equality constraints. By incorporating a time-decaying penalty function, the algorithm achieves an FXT consensus on marginal costs and ensures asymptotic convergence to the optimal TV solution of the original RMP. Unlike the prior methods with centralized coordination, the proposed algorithm is fully distributed, scalable, and privacy-preserving, making it suitable for real-time deployment in dynamic MG environments. Rigorous theoretical analysis establishes FXT convergence under both identical and nonidentical Hessian conditions. Simulations on the IEEE 14-bus system validate the algorithm’s superior performance in convergence speed, plug-and-play adaptability, and robustness to switching topologies.

Suggested Citation

  • Tingting Zhou & Salah Laghrouche & Youcef Ait-Amirat, 2025. "Distributed Time-Varying Optimal Resource Management for Microgrids via Fixed-Time Multiagent Approach," Energies, MDPI, vol. 18(10), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2616-:d:1658905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/10/2616/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/10/2616/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Kunming & Li, Qiang & Chen, Ziyu & Lin, Jiayang & Yi, Yongli & Chen, Minyou, 2021. "Distributed optimization method with weighted gradients for economic dispatch problem of multi-microgrid systems," Energy, Elsevier, vol. 222(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Runzhuo & Bu, Siqi, 2025. "Evaluation and mitigation of carbon emissions in energy industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    2. Zhao, Hongye & Liao, Shengli & Liu, Benxi & Fang, Zhou & Wang, Huan & Cheng, Chuntian & Zhao, Jin, 2025. "Multiagent optimization for short-term generation scheduling in hydropower-dominated hydro-wind-solar supply systems with spatiotemporal coupling constraints," Applied Energy, Elsevier, vol. 382(C).
    3. Zhou, Xu & Ma, Zhongjing & Zou, Suli & Zhang, Jinhui, 2022. "Consensus-based distributed economic dispatch for Multi Micro Energy Grid systems under coupled carbon emissions," Applied Energy, Elsevier, vol. 324(C).
    4. Swarupa Pinninti & Srinivasa Rao Sura, 2023. "Renewables based dynamic cost-effective optimal scheduling of distributed generators using teaching–learning-based optimization," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 353-373, March.
    5. Wang, Hao-ran & Feng, Tian-tian & Xiong, Wei, 2022. "How can the dynamic game be integrated into blockchain-based distributed energy resources multi-agent transactions for decision-making?," Energy, Elsevier, vol. 254(PB).
    6. Sourav Basak & Bishwajit Dey & Biplab Bhattacharyya, 2023. "Uncertainty-based dynamic economic dispatch for diverse load and wind profiles using a novel hybrid algorithm," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4723-4763, May.
    7. Sourav Basak & Biplab Bhattacharyya & Bishwajit Dey, 2022. "Combined economic emission dispatch on dynamic systems using hybrid CSA-JAYA Algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2269-2290, October.
    8. Roldán-Blay, Carlos & Escrivá-Escrivá, Guillermo & Roldán-Porta, Carlos & Dasí-Crespo, Daniel, 2023. "Optimal sizing and design of renewable power plants in rural microgrids using multi-objective particle swarm optimization and branch and bound methods," Energy, Elsevier, vol. 284(C).
    9. Tang, Xiongmin & Li, Zhengshuo & Xu, Xuancong & Zeng, Zhijun & Jiang, Tianhong & Fang, Wenrui & Meng, Anbo, 2022. "Multi-objective economic emission dispatch based on an extended crisscross search optimization algorithm," Energy, Elsevier, vol. 244(PA).
    10. Srikant Misra & P. K. Panigrahi & Bishwajit Dey, 2023. "An efficient way to schedule dispersed generators for a microgrid system's economical operation under various power market conditions and grid involvement," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1799-1809, October.
    11. Yang, Jun & Sun, Fengyuan & Wang, Haitao, 2023. "Distributed collaborative optimal economic dispatch of integrated energy system based on edge computing," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2616-:d:1658905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.